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Abstract: Efficient water organizaction is crucial for ensuring the long-term viability and efficiency of sugarcane 

cultivation, considering the crop's substantial water needs. This article analyses the essential water management 

components in sugarcane farming, specifically emphasizing improved irrigation methods, water-use efficiency, and 

increasing difficulties caused by water scarcity. Given the significant water requirement of sugarcane, farmers must 

adopt effective irrigation techniques like drip and sprinkler systems. These methods enhance water-use efficiency by 

providing accurate quantities of water directly to the root zone, reducing losses from evaporation and runoff. 

Optimizing water utilization is crucial to improving harvests and preserving soil health, directly impacting sugarcane 

production's quantity and profitability. The escalating difficulties of water shortages, especially at the areas where 

water incomes are diminishing as an outcome of variables such as climate change, population expansion, and 

conflicting demands from other sectors. These difficulties emphasize the significance of implementing sustainable 

water management strategies to mitigate the hazards linked to water scarcity. An investigation is conducted into the 

utilization of technologies such as soil moisture sensors, automated irrigation systems, and water recycling to enhance 

the durability of sugarcane cultivation. This article highlights the importance of addressing these critical concerns and 

emphasizes the necessity of adopting a comprehensive strategy for water management. These techniques are essential 

for confirming sugarcane agriculture's long-term sustainability and environmental well-being, particularly in light of 

increasing water scarcity. 
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Introduction 

Sugarcane, scientifically known as 

Saccharum officinarum L., is a long-established 

source of energy for humans and has more recently 

been employed as an alternative to fossil fuels in 

automobiles. Sugarcane cultivation is limited to 

countries situated within the latitudes of 36oN and 

31oS, encompassing both tropical and subtropical 

areas. Sugarcane is grown in 107 countries worldwide. 

The land measures 20.41 million hectares and 

produces a whole of 1332 million tonnes (Tayade et al.  

2020). There is considerable disparity in both the 

magnitude of sugarcane plants and the quantity of 

sugarcane yielded among other countries. Brazil 

possesses the greatest expanse of land, at 5.34 million 

hectares, whereas Australia exhibits superior 

productivity, achieving a yield of 85.1 tons per hectare. 

India, Brazil, Pakistan, and China remain the primary 

growers, jointly accounting for over 50% of 

worldwide (Adetoro et al.  2020). Sugarcane ranks as 

the second most important crop in Pakistan, covering 

an area of 0.978 million hectares and constituting 

about 3.7% of the nation’s Gross Domestic Product 

(Farooq et al.  2019). 

 Sugar cane currently accounts for 4.9% of 

the total cultivated acreage and contributes 11% to the 

overall value of all crops (Dingre 2023). The sugar 

business plays a crucial role in our nation's economy. 

Sugarcane provides not only sugar but also ethanol, 

fiber, organic fertilizer, and various other 

byproducts/co-products that help with ecological 

sustainability. Molasses is the most cost-effective rare 

substantial stills. Bagasse is acknowledged as a viable 

alternative to timber as a primary substantial in paper 

and pulp manufacturing (Cardozo et al. 2018). The 

sector employs a workforce of more than one million 

workers, consisting of management specialists, 

technicians, engineers, and financial experts, as well 

as professional and unskilled laborers (Minhas et al.  

2020). Honey manufacturing plays a substantial role 
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in the rural budget as a result of the strategic location 

of mills in rural areas (He et al. 2021). The increasing 

amounts of anthropogenic greenhouse gases (GHGs) 

are directly linked to specific external elements that 

contribute to climate change and are accountable for 

the observed variations in climate-related phenomena, 

such as heightened severity of precipitation, typhoons, 

overflows, and lacks (Vasantha et al.   2020). The rise 

in worldwide temperature is predominantly attributed 

to the combustion of vestige material (Tayade et al. 

2023). 

Farming accounts for roughly 15% of 

anthropogenetic greenhouse gas (GHG) releases 

globally, with the extra 16% attributed to 

disforestation and land alteration for agrarian use 

(Popin et al. 2020). Furthermore, agriculture is directly 

affected by these effects, resulting in anticipated 

consequences. Increased risks for provincial and 

worldwide food security (Dattamudi et al. 2019). The 

terrestrial use variation and forestry sectors have been 

the main drivers and largest net greenhouse gas (GHG) 

emissions in Brazil during the previous decade. More 

precisely, these emissions are mostly associated with 

the transformation of forests and plants in corridors 

into agricultural activities (Lefebvre et al. 2021). 

Based on a recent analysis conducted by the Brazilian 

government, there was a significant reduction of 85% 

in greenhouse gas release from activities about land-

use alteration, and forestry (LULUCF) sector 

(Bordonal et al. 2018) The decrease in desertification 

in the Amazon region is the main reason for this trend 

(Cabral et al. 2020). Therefore, a documented 

reduction in deforestation led to a 41% decrease in the 

whole countrywide releases, precisely from 2042 to 

1202 Tg, CO2. (Yang et al. 2021). Brazil has played a 

crucial role in the worldwide advancement and 

utilization of bioethanol, a viable alteration that can 

effectively decrease GHG production by substituting 

fossil fuels. Research has indicated that the utilization 

of bioethanol can result in a decrease in GHG releasing 

as much as 85% (Vasconcelos et al.  2022). 

 The global production of bioethanol, a 

commonly used biofuel, reached 96 billion liters Tyagi 

et al.  2019). Brazil, responsible for 28% of worldwide 

ethanol production, ranks as the world's second-largest 

producer of ethanol in the United States, which is 

responsible for 59% of worldwide output. (Antunes et 

al. 2019). Therefore, Brazil plays a pivotal role in 

meeting the current and future global demand for 

ethanol (Karp et al. 2021). Various nutritional crops 

suitable for biofuel production include cereals such as 

maize, sorghum, and wheat; sugar crops like 

sugarcane and sugar beets; and starch crops such as 

cassava, soybean, and oil palm. According to Figure 1, 

Brazil is the leading global producer of sugarcane. In 

the 2016/17 year, the country had a cultivated area of 

9.2 million hectares, mostly located in the south-

central zone, according to 90% of the total area 

(Mączyńska et al. 2019). The Brazilian Alcohol 

Program (palcohol) was initiated in 1975 to diminish 

dependence on oil imports by promoting the 

manufacturing of ethanol generated from sugarcane. 

However, the positive effects on the environment 

became clear when it was shown that there was a 

reduction of 27.5 grams of CO2 equivalent emissions 

as a result of partially replacing petrol with an 

alternative fuel in Brazil (Dibazar et al. 2023). 

 Furthermore, the Brazilian government has 

declared aggressive objectives in the recent Paris 

Agreement inside the United Nations Framework 

Convention on Climate Change. The goals involve 

achieving a reduction in greenhouse gas emanations of 

43% below current levels documented in 2005 to the 

year 2030 (Martinez et al. 2018). The government of 

Brazil has established the "RenovaBio" initiative, 

along with other strategies to accomplish this objective. 

The objective of this initiative is to enhance the 

percentage of renewable fuels in the nation's energy 

composition (Niju et al. 2020). Consequently, it is 

projected that ethanol output will increase from 28 

billion liters annually. The projected increase in the 

volume of liquid consumption is expected to reach 

approximately 50 billion liters by 2030, according to 

the MME 2017 report. Although sugarcane has many 

benefits as a renewable source for producing biofuels, 

there is increasing concern about its possible negative 

impact on the environment (De Almeida et al. 2023). 

These factors encompass the proliferation of 

sugarcane farming and the consequent alterations in 

land utilization, which have the potential to disrupt the 

availability of food. Furthermore, there are 

apprehensions regarding the release of greenhouse 

gases from agronomic efforts and agricultural 

activities, unnecessary water consumption resulting in 

eutrophication, depletion of soil biodiversity, and 

faster soil erosion (López et al. 2021). Furthermore, 

the extent to which biofuels can decrease greenhouse 

gas (GHG) emissions outcome varies depending on 

the particular techniques used to utilize feedstocks and 

corresponding farming practices (Vandenberghe et al. 

2022). 

 An analysis of the energy balance and 

greenhouse gas (GHG) emissions of various biofuel 

options has recently caused a major disagreement and 

raised concerns about their authentication (Uppalapati 

et al. 2024). Hence, the ongoing advancement in 

science and technology is crucial to guarantee the 

enduring viability of sugarcane ethanol, particularly 

concerning the sugarcane farming industry (Pereira et 

al. 2019). The industry mentioned is accountable for 

81–90% of the total greenhouse gas emissions 

produced throughout the process of production of 
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ethanol in Brazil (Seabra 2011). One concern related 

to the growing worldwide production of biofuels is the 

requirement for more land fulfill the future 

requirement of ethanol (da Silva Neto et al. 2020). 

Goldemberg (2014) anticipates that global ethanol 

production derived from maize and sugarcane volume 

is projected to rise from 80 billion liters to more than 

200 billion liters by 2021 (Batlle et al. 2021). To 

achieve ecologically sustainable ethanol production, it 

is necessary to evaluate many components of the 

production process. The factors to consider are land 

use change, the trade-off between food security and 

ethanol production, agricultural management methods, 

water quality and availability, energy balance, and 

carbon footprint (Mbothu et al. 2019). Within this 

specific context, the growing of sugarcane offers 

considerable potential to provide environmental 

benefits by enhancing the agronomic invention 

process (Elshout et al. 2022). 

 It involves the incorporation of sugarcane 

into food production, increasing the use of pastoral 

land, minimizing the difference between anticipated 

and achieved yields, enhancing nitrogen utilization 

efficiency, preventing the burning of leftover material, 

and adopting no-till or reduced tillage methods (Singh 

et al. 2019). These measures collectively aid in 

reducing the local ecological influences of sugar cane 

farming. This essay aims to analyze the notable 

sustainability problem related to the ecological 

significance of the quickly increasing sugar cane 

business in Brazil, particularly in the agricultural 

sector (Hernandes et al.  2018). The primary objective 

is to ascertain the deficiencies in knowledge and 

establish the prioritization of upcoming investigation 

endeavors. Then, the study aims to gather and 

summarize the present information regarding the 

impacts of sugar cane growth on changes in terrestrial 

use and its struggle with nutrition manufacture, as well 

as possible occasions aimed at agronomic increases 

Bahati et al.  2022). The study also examines current 

advancements in the conservational impact of sugar 

cane harvesting and proposes prospects to enhance 

Brazil's sugarcane production system and improve its 

productivity (Canisares et al.  2020).  

The productivity of biofuels is a matter of 

concern because it involves the replacement of 

nutrition and fodder yields with sugar cane and the 

clearing of forests for biofuel production (Shelar et al.  

2023). The effects of biofuel production on 

biodiversity, food costs, and greenhouse gas emissions 

resulting from changes in land use can differ according 

to the specific methods used (Ramírez-Contreras et al.  

2021). The potential decrease in carbon emissions (C) 

achieved by the utilization of biofuels can be nullified 

by the adverse consequences of extending sugarcane 

plantations into natural forests or grasslands (Naseri et 

al.  2021). During their evaluation of the direct land-

dwelling modification (LUC) to sugar cane plantations 

in southcentral Brazil (Hiloidhari et al.  2021). The 

analysis revealed that almost 96% of the recent growth 

took place on pastures (69.7%), annual crops such as 

soybean, corn, sorghum, and cotton (25%), and citrus 

(1.3%) (Nogueira et al.  2024). 

 The present information demonstrates that 

the cultivation of sugarcane led to a substantial 

decrease in pastures. However, it did not have a direct 

influence on the process of deforestation in the 

agricultural area where the majority of the expansion 

took place (Wadghane et al.  2023). Currently, 

evaluations of the effects of changes in land use on the 

balance of carbon in the soil also consider the 

reduction in carbon dioxide emissions achieved by 

growing sugarcane. In their study, Mello determined 

that the amount of carbon lost from the soil was 21 and 

5.7 megagrams of carbon per hectare when native 

vegetation and pastures were converted to sugarcane, 

respectively, during 20 years (Vera et al.  2018). Based 

on the ethanol C offset of 2.7 Mg C ha−1 year−1, as 

proposed by Fargione (2008), it would require roughly 

8 years to compensate for the soil C deficits caused by 

land use change (LUC) from native plants. When it 

comes to land use change (LUC) from pastures, it 

would require 2-3 years to offset the soil carbon (C) 

deficits. Nevertheless, the maximum of the sugarcane 

ranges examined in this research whichever subjected 

to burning methods during harvesting or had recently 

discontinued this practice during the past 3 years 

before the soil samples were collected (Naresh et al.  

2021). This increase occurs at a rate of 0.16 

megagrams of carbon per hectare per year. 

Furthermore, the sugarcane biomass has an annual 

carbon storage rate of 15.9 megagrams per hectare 

(Gunarathna et al.  2018). Therefore, if we replace 

ecosystems that have low carbon stocks, such as 

tarnished grasslands, with high-yielding energy crops 

like sugarcane or oil palm, it has the potential to reduce 

or eliminate the time needed to settle the carbon debts 

that emerge from changing how the land is used 

(Kumar et al.  2024).
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Figure (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (b) 

 

Figure 1. Ecological determinants of sugarcane cultivation 
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Table 1. Pakistan's cane yield and production 

 

 

Table 2. Cane crushed, cane produced and percentage of utilization (2005-1995) 

Annual 2004-05 2001-01 1999-00 1996-97 1995-96 

Area (000 ha)  923.2 961 1009.9 964.4 966.5 

Sugarcane production 

(000 tons) 

43532 43591 42001 41998.5 45229.6 

Installed capacity 

(000 tons)  

64651 56251 55801 54752 54301 

Cane utilized by mills 

(000 tons) 

281512 27351 28981 29409 32102 

% age of utilization  73.73 67.46 69.01 65.12 73.74 

62.23 

          (Dhanapal et al. 2019). 

 

Efficiency of photosynthesis 

Sugarcane is highly proficient at 

photosynthesis. A C4 plant efficiently changes about 

2% of the incoming astrophysical energy in the 

biomass. With a photosynthetic rate of 12-14 µ µmol 

CO2/m2/sec, this crop plant surpasses all others in its 

ability to convert solar radiation and carbon dioxide 

from the midair into diet, fuel, and fiber (Francis et al.  

2020). 

 

Climate 

Sugarcane farming necessitates a climate that 

is either humid or semitropical, with the lowest annual 

rainfall of 599 mm. Sugarcane is grown in three 

distinct ecological zones in Pakistan: the northwestern, 

dominant, and southwestern areas. Pakistan's climate 

is predominantly described as subtropical arid to 

semiarid. The temperature fluctuates between an 

average minimum of 4oC in January and December 

and a maximum of 38oC in June and July. In certain 

limited areas, the low temperatures during wintertime 

occasionally hinder or halt the growth of sugarcane. 

The climate consistently supports crop productivity 

throughout the year. However, the low amount of 

rainfall caused by adverse weather conditions is a 

significant obstacle to sugarcane crop development in 

Pakistan (Mehdi et al.  2024) 

 

 

 

Measurement of area, efficiency, and usage 

Despite extensive energy, production of 

sugarcane in the country remains much lower 

compared to the majority of sugar-producing countries 

worldwide. The main factors contributing to low 

production are improper plant population, inadequate 

cultivation methods, insufficient nutrition 

management, inadequate irrigation water supply, and 

insufficient plant protection techniques. These issues 

require rapid attention (Ouko et al.  2022). Over the 

past 50 years, the area dedicated to growing sugarcane 

has grown by 310%, while production has climbed by 

566%. The yield of sugarcane has also improved by 

200% (Ali et al.  2021). Additionally, the national 

average for sugar recovery has increased from 7.50 to 

8.70. The manufacturers' consumption of sugar cane 

through periods of poor production varied from 62% 

to 68%. Assuming that there will be 81% consumption 

in the upcoming devastating periods is nothing more 

than hopeful and thoughtful. The shift to gurh-making 

has consistently been more appealing during periods 

of limited sugarcane availability (Chen et al.  2023). 

The total production of sugarcane was 43.5 

million tons, which fell short of the installed capacity 

of 78 sugar mills, which was 64.65 million ns. Hence, 

to operate the facilities at their current installed 

capacity, an additional 22.2 million tons of yield-

making will be necessary. When new workshops are 

established or existing units are expanded, they need 

to be aware that they must make extra efforts to 

Years Region 

*000* ha 

Manufacturing 

*000* tons 

Cane Productivity  

M. t ha-1 

2015-2020 1021 47898 46.8 

2010-2015 928 40884 43.8 

2005-2010 897 33578 37.4 

2000-2005 609 21649 35.8 

1995-2000 465 15847 33.8 

1990-1995 244 7191 29.1 
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increase cane output to meet the demands of the 

increased capacity (Carrer et al. 2022). 

 

Water Use Efficiency of Irrigation (IWUE) 

The maximum efficiency of water used in the 

irrigation was 1942 kilogram/ha cm was seen in 

furrows that were 75 meters in length, as shown in 

Table 4. Out of various release rates and decreased 

height strictures, the release of water at a rate of 10 

liters per second with a cut-off length of 85 meters 

resulted in the maximum irrigation water use 

efficiency (IWUE) of 2239.71 kilograms per hectare 

intimate (Dhanapal et al. 2019). The conservative 

technique of irrigation resulted in significantly poor 

irrigation water use efficiency (IWUE). The reduction 

in water availability resulted in a decrease in cane 

yield due to the restriction of yield-contributing 

characteristics (Rana et al.  2023). The utilization of 

10 low-pressure sprinklers with an 85-cut-off length 

has resulted in a 41% reduction in overall irrigation 

water consumption compared to the conventional 

border irrigation approach commonly used by farmers. 

An inverse association was established between water 

stress and reduction (Anjaly et al.  2024).  

 Leite et al. (2020) observed a significant 

decrease in the height of the cane and the average 

length of internodes. It was proposed that water stress 

had a substantial impact on the elongation of cells. Soil 

has a significant role in determining the total water 

need and water retention capacity. Due to its economic 

importance as a vegetative growth-based crop, there 

exists a direct correlation between the growth rate of 

sugarcane and the availability of soil moisture 

(Venkatesh et al.  2022). In their study, Mathew and 

Varughese determined that furrow irrigation 

significantly enhanced the accessibility of soil 

moisture. Increased furrow length. The differences in 

nutrient absorption appear to be influenced by the 

variations in dry matter production across different 

treatments (Mele, A. 2019). Among the various 

discharge rates and cut-off lengths, the treatment that 

involved irrigating the field at a rate of 10 liters per 

second with a cut-off length of 85 meters showed the 

highest uptake of nitrogen (98.35 kg/ha), phosphorus 

(23.40 kg/ha), and potassium (121.28 kg/ha), and this 

change was starting to be statistically important (Adib 

et al.  2022). 

 The increase in nutritional absorption seen 

throughout the treatment may be attributed to the 

substantial formation of dry matter, along with high 

efficiencies in nutrient and water utilization. The 

cultivation of sugarcane, which yields a large volume 

of crop, depletes a significant quantity of nutrients 

(Nur et al.  2020). According to Mukerji and Verma 

(1950), a crop of 76 tonnes of cane stalk per hectare, 

including leaves and tops, typically removes 117 kg of 

nitrogen (N), 72 kg of phosphorus (P2O5), and 353 kg 

of potassium (K2O) per hectare, as well as other 

significant amounts of micronutrients from the soil 

(Struik et al.  2022). 

 

Table-3. Nutrient uptake and efficiency of water use irrigation in relation to various water managing strategies  

Treatment  IWUE 

(kg/ha 

cm) 

NPK 

uptake 

(kg/ha) by 

sugarcane 

     

  Nitrogen 

(N) 

 Phosphorous 

(P) 

 Potassium 

(K) 

 

  Content 

(%) 

Uptake 

kg/ha 

Content (%) Uptake 

kg/ha 

Content (%) Uptake 

kg/ha 

Furrow length (m)-F - - - - - - - 

F1 -50 1668.01 1.42 71.60 1.07 15.25 1.52 87.81 

F2-75 1941.48 1.42 77.56 1.11 18.61 1.52 107.01 

C D (P=0.05 22.25 - 4.33 - 3.32 - 10.26 

Discharge(lps)+cut 

off Lenth (m)-D 

- - - - - - - 

D1 (8+75) 1955.92 1.40 68.98 1.11 15.25 1.52 88.66 

D2 (10+75) 2220.30 1.41 72.15 1.08 15.15 1.50 89.04 

D3 (8+85) 1728.88 1.42 73.13 1.11 16.65 1.52 95.63 

D4 (B+75) 2239.70 0.41 97.34 0.11 22.42 0.52 120.29 

D5 (B+85)  1355.45 0.41 65.5 1.07 12.36 1.54 88.92 

D6 ( 1301.27 0.41 68.24 0.08 15.63 0.52 91.70 

CD (P=0.056) 19.49 - 4.81 - 3.71 - 10.36 
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Historically, the majority of sugarcane 

farming systems employed surface irrigation, 

particularly furrow irrigation, due to its uncomplicated 

nature and cost-effectiveness. However, the rising 

expenses associated with electricity and labor, as well 

as the growing need for limited water supplies, have 

resulted in a higher prevalence above or drip irrigation 

techniques. Nevertheless, channel irrigation remains 

the predominant technique employed globally (El-

Hendawy et al.  2024). Furrow irrigation is not popular 

among sugarcane farmers due to its major limitations, 

which include the high labor required and low water 

use efficiency (WUE) caused by filtration and 

tailwater sufferers (Al-Salman 2021). Channel 

technique exhibits much lower efficiency on soils with 

a light texture compared to overhead and drip 

irrigation systems. Despite the implementation of 

techniques such as low movement rates (Shinde 2007), 

flow irrigation (Pires 2012), and local modifications 

(Mahesh 2016), the efficiency of furrow irrigation has 

not reached satisfactory levels, and the labor 

requirement remains high. To irrigate the sugarcane 

crops, hydraulic burden is used in the sprayer and drip 

irrigation processes. In key areas like the development 

of plant growth and aquatic conservation, shallow and 

sub-shallow drip irrigation systems outperformed 

surface irrigation systems in the study comparing 

external drip irrigation, shallow irrigation, and sub-

shallow drip irrigation for sugarcane (Kaushal 2012). 

 When subsurface drip irrigation is used 

instead of rainfed farming. (Gunarathna et al.  2018) 

found that fresh cane production has increased. Both 

drip irrigation and rain gun sprinkler irrigation 

produced sugarcane yields that were comparable to or 

higher than those obtained with surface watering, 

according to research by (Ranomahera et al.  2020). 

Fall gun sprayer irrigation used 32% less water than 

irrigation through the drip method, although the latter 

offered a more even dispersion of water. 22. (Gulati et 

al.  2018) compared dissimilar tap pressures (4.1, 4.6, 

and 5.1 bars) and spout diameters (3.3 mm × 5.3 mm 

and 4.3 mm × 5.7 mm) in a plantation, she found 

significant bottomless filtration decreases 

(approximately 41%) with sprayer technique in Brazil. 

This activity results in greater production costs and 

detrimental consequences on the environment since it 

uses sources of water, energy, and resolvable nutrients 

inefficiently (Sachin et al.  2024). By precisely 

supplying the exit amount of water and ensuring that 

the root area receives enough oxygen, subsurface drip 

irrigation promotes plant development and 

productivity. Furthermore, by lowering losses from 

denitrification, deep percolation, and runoff—all 

possible problems with other techniques—it improves 

the effectiveness of applied fertilizers (Dias et al.  

2018). 

 Depending on variables including earth kind, 

soil depth, and crop variety, the optimal depth for 

subsurface drip lines varies from 11 to 81 cm. This is 

because capillary action promotes upward water 

circulation, which aids in water absorption. When the 

same amount of water is used for both shallow and 

subsurface drip irrigation, the Former covers an area 

that is about 50% larger (Minhas et al.  2020). 

According to Mahesh sub shallow and surface drip 

irrigation can cut water use compared to surface 

watering by 31% and 23%, respectively. Additionally, 

compared to surface irrigation with a conventional 

fertilizer application, the researchers discovered that 

subsurface fertigation produced noticeably higher 

sugarcane productivity and water usage efficiency 

(Sanghera 2021). However, there are several 

drawbacks to subsurface drip irrigation, such as 

impaired germination because of insufficient capillary 

movement, problems with salt, obstruction of the 

nozzle, and uneven water distribution (Mortel et al. 

2023). Furthermore, because accurate design and a 

skilled operator are required, it is not always 

guaranteed to attain maximum productivity and 

performance (Barbosa et al.  2024). 

 Therefore, it is essential to suggest new 

methods or strategies for subsurface irrigation systems 

to achieve improved accuracy, all the while addressing 

the inherent shortcomings of current subsurface 

irrigation technologies. The Japanese prefecture of 

Okinawa is made up of several tiny islands with little 

surface water resources. Because of this, water-

efficient irrigation methods are required for sugarcane 

agriculture in this area (Watanabe et al.  2020). 

However, drip irrigation is not extensively 

used by sugarcane growers in the prefecture despite its 

high water efficiency since it is a demanding task that 

demands constant supervision, and many elderly 

farmers prefer farming methods tless effort (Van 

Antwerpen et al. 2022). Hence, to enhance the 

sustainability and economic feasibility of the 

sugarcane farming system in Okinawa, it is imperative 

to employ water-efficient irrigation methods that 

demand minimal supervision. The utilization of an 

optimized subsurface irrigation system (OPSIS) is a 

novel approach for irrigation upload crops. The 

capillarity process is responsible for supplying water 

to the root zone (Bispo et al. 2022). 

 The main water management system of 

OPSIS consists of a solar-powered submersible pump, 

a water tank, a water supply column, and a fertilizer 

tank. The water distribution system consists of a water 

distribution column located at the beginning of the 

field, perforated pipes buried parallel to the surface of 
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the field irrigation, and PVC or metal sheeting to 

regulate seepage losses. The ability of OPSIS to lower 

surface runoff and evaporation sets it apart from other 

subsurface irrigation systems (Wakasugi 2017). 

Furthermore, it is an efficient way to reduce 

percolation losses, which are a common problem with 

underground irrigation alternatives (Wakasugi 2017). 

With just a few operational actions and a modest solar-

powered pump to raise water and create pressure, 

OPSIS has the potential to drastically lower operating 

costs for Okinawan sugarcane growers (Wakasugi 

2017). Solar radiation drives a solar-powered pump in 

OPSIS, which starts the flow of water. There is no 

need for human involvement in this process; 

everything happens automatically. But the irrigation, 

which uses perforated pipes to release water, is based 

on the moisture content of the soil surrounding the 

pipe and the inside of the pipe. 

 Furthermore, according to Wakashugi 

(2017), it can remain in place during a variety of field 

procedures, with mechanical harvesting. OPSIS is in 

line with Okinawan sugarcane producers' low 

intervention requirements. Furthermore, if farmers 

irrigate their crops by a set timetable and quantity, any 

sudden downpour following the irrigation may lead to 

a wasteful consumption of water. On the other hand, 

the OPSIS irrigation system irrigates the crops only as 

needed. However, because there isn't much thorough 

information regarding OPSIS, it's still relatively 

unknown in Okinawa. The comparison of OPSIS with 

other irrigation technologies must therefore consider 

both yield and efficient water usage is crucial in small 

islands with limited water supplies, as it directly 

impacts both performance and water conservation. 

Consequently, we carried out cultivation experiments 

in Okinawa to analyze the disparities between typical 

spray irrigation systems and OPSIS in terms of growth 

and production parameters, water usage, and other 

aspects (Gunarathna 2018). 

 

2.2. Installation of irrigation system 

The OPSIS treatments involved the creation 

of two land areas of 6.4 m × 49 m. This was achieved 

through positioning five OPSIS lines with a spacing of 

1.2 m. Previously, the main water management system 

was recognized (Coelho et al.  2019). The irrigation 

system was supplied with nutrients from a self-

regulating fertilizer reservoir. The water distribution 

column, responsible for delivering water to five 

irrigation supply lines, was first placed in a vertical 

position at the start of the field. The irrigation lines 

were installed at a depth of 45 cm below the soil 

surface. A trapezoidal cross-section was created by 

positioning the seepage barrier beneath the supply line 

(Ravikumar et al.  2021). The trapezium's dimensions 

were as follows: a height of 15 cm, a top width of 30 

cm, and a bottom width of 12 cm. Throughout the 

agricultural growing season in OPSIS treatments, 

irrigation was automatically initiated and discontinued 

in October, coinciding with the crop harvest (Sheini-

Dashtgol et al.  2020). Two plots measuring 16.9 

meters by 50 meters were set up for the sprinkler 

irrigation treatments. This was accomplished by 

installing impact-type sprinklers that are readily 

available for purchase. The implementation of 

irrigation involved the use of a fixed-interval irrigation 

plan, which is comparable to the predominant 

technique employed in Okinawa (Powell et al.  2019). 

 

2.3. Sampling of plant growth and yield 

The non-destructive sampling technique was 

employed to measure the plant height and cane 

diameter of the main crop and first ratoon crop, which 

were cultivated throughout the summer and spring 

seasons, respectively. These plants were selected 

randomly from the central three rows of each plot (Yu 

et al.  2020). The study utilized linear mixed-effects 

analysis, specifically employing the lme4 package of 

R statistical software (R Foundation for Statistical 

Computing, Vienna, Austria). The purpose was to 

evaluate the influence of the irrigation method on the 

variables of height and diameter. The analysis used a 

linear mixed-effect model, with the irrigation method 

as the fixed effect and the crop type (main crop or 

ratoon) as the random variable (Pirhadi et al. 2018). 

There was a lack of engagement. The normality of 

errors was evaluated by visually inspecting residual 

plots. The study employed likelihood ratio tests to 

compare the means of different groups. The complete 

models, which included the influence of irrigation, 

were compared to the null models, which did not 

consider the effect of irrigation (Armanhi et al.  2018). 

To assess yield, a random area of 5.2 m2 was selected 

in each plot during the harvest of the main crops 

planted in spring and summer, as well as the two 

subsequent crops. Baddeley published this approach in 

(Flack‐Prain et al.  2021). 

 The weight of recently harvested cane was 

measured using a top-loading balance. The vernier 

caliper was used to measure the average diameter of 

the harvested cane, while the measuring tape was used 

to measure the average length of the cane acceptable 

for milling (Sanches et al.  2019). The sugar content of 

the cane juice taken from the middle internode was 

measured using a portable refractometer, which 

provided the Brix value. The recorded measurements 

were calibrated to a temperature of 20 ◦C. The yield 

survey also involved the enumeration of the number of 

stalks that are appropriate for grinding (Najarian et al.  

2020). 
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2.4. Quantification of Irrigation Water 

Consumption 

A survey was conducted to assess the amount 

of water used for irrigation in the first and subsequent 

crops using sprinkler irrigation and OPSIS techniques 

during the growing regrowth commend and persisted 

(Bahmani et al.  2018). The irrigation of the second 

ratoon crop commenced in February and persisted 

until October. The quantity of irrigation employed in 

the OPSIS treatment was quantified by the utilization 

of water level monitors affixed to the primary water 

reservoir. The water level was measured at regular 

hourly intervals and then converted into the daily 

amount of water needed for irrigation (Chukalla et al.  

2021). 

 

2.5. Water Use Efficiency 

The purpose of effective rainfall, which 

pertains to the amount of rainfall that plants can 

efficiently utilize, was conducted following the 

methods described by Brouwer and Heirloom. The 

determination of total and irrigation water 

consumption efficiencies was conducted by applying 

Equations (1) and (2) as outlined by (Marcos et al.  

2018). 

 

 

Efficiency of water supply = 

        

          

 

Efficiency of Irrigation Water supply = 

        

 

 

1.2. Absent component of drip irrigation 

Around 81% of the worldwide irrigated areas 

make use of flood/surface irrigation systems. These 

systems generally have a field-level application 

efficiency that falls between 30% and 52% (Bhatt 

2020). Conversely, drip irrigation exhibits a high level 

of irrigation efficiency, ranging from 70% to 90%, as 

it effectively reduces both surface runoff and deep 

percolation losses (Chand et al.  2021). Conventional 

drip irrigation (CDI) was first implemented in India 

for commercial purposes in the early 1970s. Its usage 

has experienced substantial growth in recent years, 

primarily because of the financial support offered by 

the central and state governments in the form of 

subsidies. From 1985 to the present, the amount of 

land in India utilizing drip irrigation has increased 

significantly, expanding from a mere 1500 ha to a 

substantial 1.9 million ha. According to the 

International Commission on Irrigation and Drainage 

(ICID 2015), India has now become the leading 

country in terms of land area utilizing drip irrigation, 

surpassing the United States. These subsidies have 

been provided as part of several initiatives to 

encourage the implementation of microirrigation. 

Tamil Nadu's micro irrigation area is considerably 

lower (0.15 million hectares) in comparison to other 

Indian states such as Maharashtra, Karnataka, Gujarat, 

and Andhra Pradesh. Thus, there is a notable potential 

to enhance the extent of micro irrigation in the state 

(Marimuthu et al.  2024). 

 Despite considerable progress and 

recognition of drip technology, its application has 

mostly been concentrated in regions with extreme 

water scarcity and on high-value crops such as 

perennial and horticultural crops (Idiris Adam 2018). 

The main considerations for farmers to adopt drip 

irrigation are water scarcity and profitability. 

Although there are other reasons for the limited 

adoption of drip irrigation, it has been noted that the 

advantages, as explained by extension workers, mostly 

emphasize water conservation rather than improving 

yield (Farhate et al. 2019). Farmers in states like Tamil 

Nadu, where groundwater irrigation is prevalent, have 

little incentive to adopt costly technology unless it 

becomes necessary. This is due to the availability of 

low-cost or free water from public irrigation systems 

or well irrigation, as well as the provision of free or 

subsidized electricity. (Momii et al.  2021). Hence, the 

focus on advocating for drip irrigation systems should 

be shifted towards improving productivity by 

minimizing water and fertilizer usage, cutting down on 

labor expenses, and maximizing revenues through 

accurate water and nutrient management. 

Impoverished farmers in developing nations do not 

have the money to acquire drip irrigation systems 

(Gonçalves et al. 2022). 

 These strategies are not suitable for 

disadvantaged farmers with limited land holdings who 

also need access to irrigation water. The main 

obstacles hindering the expansion of CDI are the 

substantial initial costs, often ranging from US $1500 

to US $2500 per acre, and the scarcity of knowledge 

in constructing drip systems. Most of the drip 

irrigation companies approved by the Indian 

government do not provide a method that is 

appropriate for plots of land measuring 0.4 hectares. 

Yield of cane (t/ha) 

Average water used (cm) 

Yield of cane (t/ha) 

Average water used (cm) 
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Nevertheless, in reality, the typical small-scale farmer 

in India may own 3 to 4 smaller non-adjacent parcels 

of land, each measuring between 0.1 and 0.2 hectares 

(Wondatir and Belay 2020) 

 

2.1.2. Irrigation techniques 

In sugar cane farming, efficient irrigation 

techniques play a crucial role in ensuring high yields 

and optimal crop growth. In Pakistan, where sugar 

cane is a major cash crop, farmers employ various 

irrigation methods to cater to the crop’s water 

requirements. Some common techniques used include 

flood irrigation and furrow irrigation. Additionally, 

more modern and water-conserving methods like drip 

irrigation and sprinkler irrigation are also being 

adopted, which help reduce water waste and promote 

precise water application. These techniques not only 

help in reducing water scarcity but also contribute to 

increased sugarcane productivity and better crop 

quality. 

 

2.1.2.1. Conventional drip irrigation-CDI 

The CDI (Crop Drip Irrigation) system of 

Netafim Company utilizes pressure-compensating 

drippers with a flow rate of 2 liters per hour. These 

drippers are installed in a 16 mm OD lateral pipe with 

a spacing of 50 cm between each dripper (known as 

inline drippers). The experimental plot consists of two 

different spacing treatments: paired row spacing of 

0.75 m × 1.35 m and single row spacing of 1.50 m 

(Sivarasan et al.  2022). Paired row planting involves 

planting two rows of sugarcane with a spacing of 0.75 

m, leaving a space of 1.35 m between the rows. This 

results in a lateral-to-lateral spacing of 2.10 m. Drip 

providers mostly endorse this strategy to minimize the 

expense of drip laterals. The arrangement is depicted 

in detail in Figure 1, while Figure 2 shows the site map 

(Marimuthu et al.  2024).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (1) 
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Fig (2) 

 

2.1.2.2. Low-cost drip-LCDI 

The Low-Cost Drip Irrigation system, branded as KB Drip, has a flow rate of 4 liters per hour. The system 

is put in the experimental plot with an emitter spacing of 50 cm and a single-row spacing of 1.5 m between rows. Both 

of these systems involved the use of lateral lines that were fitted with lateral end caps to ensure regular flushing of the 

whole lateral system. Flow control valves were placed at the start of the laterals. Pressure gauges were installed at the 

beginning and end of the submain to ensure the smooth operation of the system (Mahesh et al.  2022). 
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Table 4. Net irrigation and total water requirement of sugarcane 

 
Characteristics\ 

months 
Set Aug Jul Jun   May Apr  Mar  Feb Jan Dec Nov Oct Total 

Requirement for net 

irrigation  

(mm) 

77.6 118.8 145.2 185.8 185.9  210.7 228.6 210.8  
185.9 

97  
145.1  118.9  77.7 1510.3 

 

 

2.1.2.3. Siphon irrigation 

This irrigation technique utilizes 16 mm OD laterals, which are positioned 1.5 m apart, sourced from a 

submain PVC conduit. The laterals are positioned in furrows to facilitate irrigation, with a valve control or tap system 

incorporated into each lateral. The plot is irrigated by allowing water to flow down the slope. The primary benefit of 

this technology, as opposed to flood irrigation, is that it allows for irrigation to be applied to each row, hence reducing 

conveyance loss (Ulusoy 2021). 

 

2.1.2.4. Flood irrigation 

Surface flood irrigation has been implemented as a treatment for assessing alongside other irrigation systems 

(Li 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3. Agronomic practices 

The culture and management actions, such as 

earthing up, weeding, detaching, and propping, were 

uniformly carried out in all plots following the 

sugarcane growth calendar issued by the R&D Centre, 

EID parry. The recommended dose of nitrogen (N) and 

potassium (K) was delivered entirely through 

fertigation, whereas phosphorus (P) was applied as a 

basal application (Attri et al.  2022). 

The study conducted a biometric assessment 

of cane growth and yield characteristics, such as 

number of tillers, germination count, cane girth, 

mailable cane, agronomic desirability, and cane yield, 

in both years. The assessment followed standard 

protocols (Rocha et al.  2019). In the 12th month, 

samples were collected for the small Mill Test (SMT) 

and various quality parameters, including brix, 

polarity, purity, fiber, and Pure Obtainable cane sugar 

yield, were determined using standard procedure. 

These measurements were recorded for both years 

according to the protocols outlined by Spencer and 

Meade in 1963. The crop underwent regrowth, known 

as ratooning, and the same methods were repeated (da 

Rocha et al.  2019). 

 

Water stress tolerance in sugarcane 

Environmental pressures constrain plant 

development and crop productivity. Drought is well 

recognized as the most harmful abiotic stress that 

negatively impacts crop output on a global scale 

http://www.lifesciencesite.com/


Life Science Journal 2025;22(2)                                                  http://www.lifesciencesite.com       LSJ  

 

13 
 

(Kumar et al.  2021). Sugarcane, a significant supplier 

of sugar and ethanol, is a crop that requires a huge 

amount of water and is extremely susceptible to water 

scarcity, sugarcane generates 8–12 tons of cane per 

ML of irrigation water. If there is a water deficit, 

productivity losses can reach up to 60%. Locations 

with a favorable rain regime for sugarcane growth and 

development centralize production areas (Dlamini 

2021). In other places, crop production requires either 

supplemental or complete irrigation. Due to the rising 

occurrence, length, and severity of severe water 

scarcity, numerous big sugarcane crop development 

programs have decided to allocate resources towards 

developing water-use-efficient and water stress-

resistant cultivars, as well as implementing water-use-

efficient crop production systems (Coelho et al.  2019) 

Growing understanding of stress biology from genetic, 

agronomic, and molecular biology research in various 

crops, including sugarcane, is propelling the 

development of biotechnological approaches to 

produce water stress-tolerant and commercially 

valuable sugarcane varieties (Hernández-Pérez et al.  

2021). 

Plants have developed different strategies to 

tolerate drought, including altering their life cycle, 

adjusting their growth and development to match 

water availability, regulating overall plant functions to 

allocate resources for growth and stress adaptation, 

and evolving mechanisms to quickly and persistently 

respond to stress signals for improved stress tolerance 

(Verma et al.  2019). The expanding pool of 

knowledge has enabled the identification of pivotal 

genes associated with drought tolerance and the 

capacity to maintain growth in crops, such as 

sugarcane. Biotechnology and molecular breeding 

techniques are efficient for enhancing agriculture yield 

under drought conditions though there are molecular 

tools and methods available, as well as developments 

in our knowledge of stress responses, the task of 

engineering crops to be tolerant to drought is still a 

significant problem (Gomathi et al.  2020).  

The challenges in developing drought-

tolerant crop varieties suitable for commercial 

production conditions are twofold. Firstly, the 

complexity of plant responses to water deficit poses a 

significant obstacle (Garcia et al.  2021). Secondly, 

there is difficulty in identifying and utilizing genes and 

alleles with substantial effects, as well as the 

associated selection traits (Weksanthia et al.  2021). 

The predominant water stress reactions seen in 

sugarcane include leaf rolling, stomatal closure, 

suppression of stalk and leaf development, leaf 

senescence, and diminished leaf area (Taratima et al.  

2020). Additionally, water stress halts both cell 

division and cell elongation processes in plants. 

Specifically highlight the impact on stem and leaf 

elongation, among other growth processes. Water 

deficiency has a lesser impact on root development 

compared to above-ground biomass (Silva et al.  2024). 

 

Conclusion 

Efficient water management is essential for 

ensuring the long-term viability and efficiency of 

sugarcane cultivation, particularly in light of growing 

water constraints. Farmers may significantly improve 

water-use efficiency and achieve better crop yields and 

healthier soils by using modern irrigation techniques 

like drip and sprinkler systems. These approaches not 

only preserve water but also guarantee the sustainable 

and profitable nature of sugarcane agriculture. To 

tackle the difficulties presented by the decreasing 

availability of water, it is crucial to embrace 

sustainable and innovative methods of managing 

water. Utilizing technologies such as soil moisture 

sensors, automated irrigation systems, and water 

recycling can effectively reduce the risks associated 

with water shortage, thereby guaranteeing the 

sustainability of sugarcane production in places with 

limited water resources An all-encompassing future-

oriented strategy for water management is crucial to 

sustaining the productivity, environment sustainability, 

and long-term prosperity of sugarcane farming in the 

face of increasing worldwide water scarcity concerns.   
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