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exponential distribution based on Type- II hybrid censored data. Fort his problem, the Gibbs sampling procedure 
and Lindley approximation are used to approximate the Bayesian predictive survival function and several hyper 
parameters are used to show the sensitivity of Bayesian Predictive Intervals with respect to these hyper parameters. 
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1. Introduction 

Experiments often end before all test units have 
failed because of cost and time considerations. In such 
experiments failure information is available only on a 
part of the sample, the data are said to be censored 
data. Type-I and Type-II censoring schemes are the 
two most common censoring schemes. A combination 
of Type-I and Type-II censoring schemes, known as 
hybrid censoring scheme. It has been discussed to 
overcome the disadvantages of those two types 
separately. This scheme was first introduced by [10, 
11], and it has been discussed extensively in the 
reliability literature. In the Type-I hybrid censoring 
scheme, the experiment is terminated as soon as a pre-
specified number r out of n items has failed or a pre-
fixed time x0 on test has been reached. This censoring 
scheme was introduced by [10]. In contrast, in the 
Type-II hybrid censoring scheme, the life-testing 
experiment gets terminated whenever the later of the 
two stopping rules is reached; see [6]. Hybrid censored 
lifetime data have been discussed by several authors, 
including [14], [13], [16], [22], [5], [17], [21], [15], 
[25], [26] and [24]. One of the drawbacks of Type-I 
hybrid censoring scheme is that there may be very few 
failures occurring up to the pre-fixed time T. Because 
of this, [6] proposed a new hybrid censoring scheme 
known as Type-II hybrid censoring scheme in which 
the life testing experiment terminated whenever the 
later of the two stopping rules is reached. 

Prediction of future events based on past and 
present knowledge is a fundamental statistical problem 
which arises naturally in many contexts. As in the case 
of estimation, a predictor can be either a predictor of a 
point or an interval. Several researches have 
considered Bayesian prediction for future observation 
based on Type-I censored data [1, 3]. Bayesian 
prediction bounds for future observation based on 
Type-II censored data have been discussed by several 
authors, including [8], [20] and [23]. [7] discussed the 
two - sample Bayesian prediction of the future life 
time of an item based on Type-I hybrid censored data 
from an exponential distribution. [9] developed the 
classical prediction intervals for future failures in the 
case of exponential distribution under Type-I hybrid 
censoring. Recently, [4] considered a general form for 
the inverted linear exponential distribution and a 
general conjugate prior and developed a general 
procedure for determining the one- and two – sample 
Bayesian prediction for future lifetimes based on a 
Type-II hybrid censored data. Prediction based on 
hybrid censored data also been discussed by several 
authors, see [26]. 

The generalized linear exponential distribution 
was originally proposed by [19], this distribution can 
be used for modeling bathtub, increasing and 
decreasing hazard rate behavior. This distribution is 
important because it contains some widely known 
distributions like exponential distribution,
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Rayleigh distribution, the linear exponential 
distribution and the Weibull distribution. 

The generalized linear exponential distribution 
with three parameter α,θ,λ) distribution, has a 

probability density function (pdf) and cumulative 
distribution function (cdf) respectively. 

 

 
 
In this paper, we study the problem of prediction 

of the GLE (α,θ,λ) distribution based on Type-II 
hybrid censored data. For purposes of computations, 
the Gibbs sampling procedure and Lindley 
approximation are used to approximate the Bayesian 
predictive survival function and Lindley’s 
approximation based on informative and non 
informative sample. In Section 2.2, one-sample 
Bayesian predictive survival function from GLE 
(α,θ,λ) distribution based on Type-II hybrid censored 
data are proposed. The two-sample Bayesian 
predictive survival function from GLE (α,θ,λ) 
distribution based on Type-II hybrid censored data is 
introduced in Section 2.3. Analysis of real data set and 

simulation are presented in Section 2.4 to illustrate the 
results. 
2. Bayesian Prediction Intervals 

The Bayes prediction of the future samples based 
on current sample, known as the informative sample, is 
an important problem in statistics. [2], proposed two 
main types of prediction problem, namely One-sample 
prediction and two sample prediction. 

Suppose that X1:n < X2:n <... < Xn:n is a hybrid 
censored sample of size n drawn from a continuous 
distribution function F (x) with density function f (x). 

Let d denote the number of that are at most T. 
There fore, under the Type-II hybrid censoring scheme 
we have one of the two following types of 
observations: 
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2.1. One-sample Bayesian prediction 

We discuss the Bayesian prediction for the GLE 
(α,θ,λ) where the three parameters α,θ and λ are 
unknown. 

Suppose that X1:n < X2:n <... < Xn:n is a hybrid 
censored sample of size n drawn from a population 
with pdf given by 1, we can rewrite the pdf as f 
(x;α,θ,λ) = H0(x;α,θ,λ)e−H (x;α,θ,λ), α,θ > 0 and λ ≥ 0, and 
cumulative distribution function (cdf) 

 

¯ 
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2.1.2. Lindely Approximation Method 

We derive the BPIs based on Lindley 
approximation, which introduced by [18] can 
approximate the Bayes estimators into a form 

containing no integral. For our estimation problem we 
describe this method below. As noticed the Bayesian 
estimates include the ratio of two integrals, we 
consider I (x) defined as 
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3. Numerical Results 

To illustrate the inferential procedures developed 
in the preceding subsections, we present a numerical 
study for the considered distribution. To illustrate the 
prediction results for the GLE (α,θ,λ) when three 
parameters α,θ and λ are unknown, we generated order 
statistics from a sample of size n = 10 from the GLE 
distribution. The generated order statistics from the 
GLE (with α = 0.8,θ = 0.5 and λ = 0.7) are as follows: 

0.0107609,0.32776, 0.38692, 0.443063, 0.8135, 
1.14747, 1.23987, 2.78955, 4.2239 and 4.24113. 

We shall use these data to consider two different 
Type-II hybrid censoring schemes. 

1- When r = 3 and T = 0.1. Since x3:10 > T, the 
testing would have terminated in this case at time x3:10 

= 0.38692 and we have obtained the following data: 
0.0107609,0.32776 and 0.38692. 
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2- When r = 2 and T = 0.4. Since T > x2:10, the 
testing would have terminated in this case at T and we 
would have obtained the following data 0.0107609 and 
0.32776. 

We assume these data to have come from the 
GLE (α,θ,λ) distribution, where three parameters α,θ 
and λ are unknown. Based on the above two Type-II 
hybrid censoring schemes, we then used the results 

presented in subsection 2.1 to constructed 95% one-
sample Bayesian prediction intervals for future order 
statistics Xs:n,s = 4,...,10, from the same sample as well 
as 95% two-sample Bayesian prediction intervals for 
future order statistics Ys:m,s = 1,...10, from a future 
sample of size m = 10. To examine the sensitivity of 
the Bayesian prediction intervals with respect to the 
hyper parameters (w1,w2,w3,w4,w5,w6), 

 
Table 1: 95% one-sample Bayesian prediction bounds for X s:n,s = 4,...,10, from GLE distribution case I 

MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LX:s UX:s LX:s UX:s 
4 0.397364 1.62064 0.396074 2.55095 
5 0.492372 2.26373 0.470125 3.70406 
6 0.669455 2.91469 0.601575 4.90543 
7 0.91536 3.66836 0.783274 6.34046 
8 1.23131 4.59977 1.02698 8.27948 
9 1.6589 5.9951 1.3695 11.428 
10 2.31958 8.92986 1.93059 19.0825 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LX:s UX:s LX:s UX:s 
4 0.397357 1.61926 0.390069 0.833344 
5 0.492551 2.26903 0.420353 1.20995 
6 0.670586 2.92268 0.481959 1.8919 
7 0.914561 3.66212 0.574731 2.67448 
8 1.23355 4.61224 0.705472 3.62296 
9 1.65947 5.99891 0.893163 5.07495 
10 2.31843 8.92279 1.19901 8.46856 

 
Table 2: 95% one-sample Bayesian prediction bounds for X s:n,s = 4,...,10, from GLE distribution case II 

MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LX:s UX:s LX:s UX:s 
4 0.436785 2.12081 0.418215 3.42356 
5 0.529006 2.72182 0.438048 4.49073 
6 0.729021 3.38946 0.494302 5.75187 
7 1.01591 4.1901 0.646235 7.33423 
8 1.3797 5.21255 0.929498 9.52947 
9 1.8601 6.76462 1.34638 13.1652 
10 2.59701 10.0753 2.00882 22.1862 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LX:s UX:s LX:s UX:s 
4 0.436869 2.12554 0.404276 0.856248 
5 0.529112 2.72351 0.406585 0.933095 
6 0.72877 3.39145 0.411557 2.06392 
7 1.01451 4.18123 0.425335 2.37685 
8 1.38029 5.21616 0.471732 3.52741 
9 1.86039 6.76039 0.618597 5.18567 
10 2.59556 10.0627 0.958795 8.99028 

 
1 and 2 presents the lower and upper 95% one-

sample Bayesian prediction bounds for Xs:n,s = 4,...,10, 
for the choices of w1 = w2 = w3 = w4 = w5 = w6 = 0 and 
w1 = 2,w2 = 3,w3 = 1,w4 = 1,w5 = 2,w6 = 3. The lower 
and upper 95% two-sample Bayesian prediction 

bounds for Ys:m,s = 1,...,10, from a future sample, are 
presented in Table 3 and Table 4. 
3.1. Conclusion 

The previous section presents the BPIs from GLE 
distribution under MCMC technique and Lindley 
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approximation. For informative and non informative 
hyper parameters, the following are observed: 

From Tales 1-4, it is clear that, the lower bounds 
are relative insensitive to the specification of the hyper 
parameters (w1,w2,w3,w4,w5,w6) while the upper bounds 
are almost insensitive. 

Moreover, Tables 1-4 show that the Bayesian 
prediction bounds based on Lindley approximation are 
more close to each other to the specification of the 
hyper parameters (w1,w2,w3,w4,w5,w6) than the 
Bayesian prediction bounds based on MCMC method. 

 
Table 3: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,10, from GLE distribution case I 

MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LY:s UY:s LY:s UY:s 
1 0.00309423 0.332859 0.000134658 0.45472 
2 0.0376391 0.468727 0.00571803 0.647135 
3 0.0927334 0.56963 0.0262002 0.814096 
4 0.155803 0.6789 0.0627917 0.978962 
5 0.220756 0.781392 0.112227 1.15391 
6 0.291511 0.899273 0.171592 1.35126 
7 0.374941 1.0587 0.240165 1.58965 
8 0.46276 1.22987 0.320203 1.9062 
9 0.567634 1.46959 0.41903 2.39976 
10 0.731292 2.00051 0.560121 3.50444 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LY:s UY:s LY:s UY:s 
1 0.00307784 0.338412 0.0000918488 0.406021 
2 0.0371989 0.456593 0.00412405 0.609823 
3 0.0928777 0.569421 0.0199296 0.783569 
4 0.155873 0.677953 0.0505335 0.953933 
5 0.222739 0.790389 0.0951987 1.13408 
6 0.294001 0.909901 0.152097 1.3369 
7 0.371384 1.0477 0.220226 1.58164 
8 0.46052 1.22385 0.30103 1.90649 
9 0.567692 1.46972 401183 2.4131 
10 0.724437 1.98156 0.544073 3.54779 

 
Table 4: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,10, from GLE distribution case II 

MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LY:s UY:s LY:s UY:s 
1 0.00420059 0.35538 0.00306869 0.335226 
2 0.0450995 0.483088 0.0372651 0.461039 
3 0.105978 0.592571 0.0928646 0.570238 
4 0.172112 0.698454 0.155312 0.676455 
5 0.241008 0.807449 0.22177 0.786561 
6 0.312406 0.922276 0.292881 0.906965 
7 0.391556 1.0587 0.370876 1.04663 
8 0.481079 1.231 0.459979 1.2223 
9 0.590443 1.47667 0.569073 1.47595 
10 0.744267 1.96272 0.724437 1.98156 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LY:s UY:s LY:s UY:s 
1 0.00421709 0.355654 0.000325946 0.405464 
2 0.0451268 0.483628 0.00968543 0.586801 
3 0.105854 0.591012 0.0380055 0.745661 
4 0.171831 0.696556 0.0831989 0.901598 
5 0.240017 0.804433 0.141067 1.06517 
6 0.313786 0.926155 0.209573 1.247 
7 0.392311 1.06226 0.289078 1.46291 
8 0.481745 1.23304 0.382596 1.74381 
9 0.591611 1.48079 0.4983 2.1709 
10 0.74651 1.96842 0.663147 3.09749 
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Fig 1. Empirical and fitted distribution function for 
completed data set. 
 

 

 
Fig 2. Q-Q plot compare data to a specific distribution. 
 
4. Real Data Analysis 

Purpose. The following data represents the relief 
times of twenty patients receiving an analgesic. This 
data set was taken from [12]. 

1.1,1.2,1.3,1.4,1.4,1.5,1.6,1.6,1.7,1.7,1.7,1.8,1.8,1
.9,2.,2.2,2.3,2.7,3.,4.1. 

We have created two artificially hybrid censored 
data sets from the above data set, using the following 
censoring schemes: 

Scheme I r = 15, T = 1.5. Since x15,20 > T, the life 
test would have terminated in this case at T, and we 
would have obtained the following data. 

1.1,1.2,1.3,1.4,1.4,1.5,1.6,1.6,1.7,1.7,1.7,1.8,1.8,1
.9 and 2. 

Scheme II r = 14, T = 2. Since x14,20 < T, the life 
test would have terminated in this case at x14,20, and we 
would have obtained the following data. 

1.1,1.2,1.3,1.4,1.4,1.5,1.6,1.6,1.7,1.7,1.7,1.8,1.8 
and 1.9. 

Before progressing, first we would like to check 
whether the GLED fit this data or not. The calculated 
value of the K-S test is 0.18497 for the GLE 
distribution and this value is smaller than their 
corresponding values expected at 5% significance 
level, which is 0.29407 at n = 20. We have just plotted 
the empirical survival function and the fitted survival 
functions in FIGURE 1. Observe that the GLE 
distribution can be a good model fitting this data. 
FIGURE 2 shows that all points of a Q-Q plot are 
inside the unit square, so, it can be seen that the GLE 
distribution fits the data well. 

In all the cases α = 1.9,θ = 0.1 and λ = 0.3. To 
construct 95% one sample BPIs for order statistics 
Xs:n,s = 16,...,20, from the same sample as well as 95% 
two-sample Bayesian prediction intervals for future 
order statistics Ys:m,s = 1,...20, from a future sample of 
size m = 20, the results in subsections 2.1.1, 2.1.2 and 
2.2 are used. The corresponding results for one-sample 
and two-sample predictions, for the choices of the 
hyper parameters are presented in Tables 5 to Table 
10, respectively. 

 
 

Table 5: 95% one-sample Bayesian prediction bounds for X s:n,s = 16,...,20, from GLE distribution case I 
MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LX:s UX:s LX:s UX:s 
16 2.01247 2.86263 2.01382 3.04435 
17 2.12139 3.15442 2.12697 3.38226 
18 2.30241 3.41405 2.30651 3.68154 
19 2.52317 3.7084 2.52146 4.01831 
20 2.80246 4.16257 2.79226 4.54379 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LX:s UX:s LX:s UX:s 
16 2.01244 2.86206 2.01055 5.0 
17 2.12078 3.14996 2.0103 5.0 
18 2.30225 3.41471 2.25477 3.57918 
19 2.52298 3.70884 2.44975 3.91866 
20 2.80118 4.16361 2.70488 4.44576 
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Table 6: 95% one-sample Bayesian prediction bounds for X s:n,s = 16,...,20, from GLE distribution case II 

MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LX:s UX:s LX:s UX:s 
16 2.01247 2.86263 2.05055 3.08882 
17 2.12139 3.15442 2.22623 3.49737 
18 2.30241 3.41405 2.40504 3.75656 
19 2.52317 3.7084 2.60671 4.06739 
20 2.80246 4.16257 2.85967 4.57226 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LX:s UX:s LX:s UX:s 
16 2.07754 3.03004 2.0577 5.0 
17 2.22657 3.25261 2.17737 3.39486 
18 2.41092 3.48039 2.33813 3.65682 
19 2.62029 3.75506 2.52718 3.96935 
20 2.87882 4.18851 2.76958 4.47515 

 
 
 

Table 7: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,20, from GLE distribution case I 
MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LY:s UY:s LY:s UY:s 
1 0.562573 2.00061 0.49741 2.14966 
2 1.04009 2.21059 0.958697 2.37733 
3 1.32532 2.35793 1.24135 2.53537 
4 1.53127 2.47761 1.44764 2.66313 
5 1.69538 2.58157 1.6129 2.77385 
6 1.83401 2.67558 1.75285 2.87388 
7 1.95578 2.763 1.87589 2.96692 
8 2.06582 2.84604 1.98706 3.05538 
9 2.16746 2.92633 2.08966 3.14106 
10 2.26308 3.00521 2.18607 3.22542 
11 2.35448 3.08385 2.27807 3.3098 
12 2.44313 3.16347 2.36715 3.39554 
13 2.53037 3.24538 2.45464 3.48417 
14 2.6175 3.33122 2.54184 3.57759 
15 2.70597 3.42323 2.63019 3.67843 
16 2.79759 3.52475 2.72146 3.79068 
17 2.89493 3.64146 2.81818 3.92116 
18 3.00218 3.78445 2.92446 4.08332 
19 3.12787 3.98114 3.04867 4.31048 
20 3.29658 4.33706 3.21517 4.73082 

 
 
 
 
 
 
 
 
 
 
 
 



 Life Science Journal 2020;17(6)     http://www.lifesciencesite.com   LSJ 

 

28 

 
 
Table 8: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,20, from GLE distribution case I for hyper 
parameters w1 = 2,w2 = 3,w3 = 1,w4 = 1,w5 = 2,w6 = 3 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindleyw1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LY:s UY:s LY:s UY:s 
1 1.24497 3.83974 1.08895 4.04442 
2 1.96905 3.97768 1.81567 4.22018 
3 2.30715 4.05058 2.15679 4.30927 
4 2.51196 4.09936 2.36124 4.36742 
5 2.65361 4.13568 2.50105 4.40999 
6 2.75956 4.16446 2.60468 4.4433 
7 2.843 4.18819 2.68573 4.47049 
8 2.91114 4.20832 2.75159 4.49338 
9 2.96831 4.22577 2.80668 4.51309 
10 3.01728 4.24113 2.85379 4.53036 
11 3.05592 4.25484 2.89477 4.54568 
12 3.09755 4.26721 2.93094 4.55945 
13 3.13112 4.27846 2.96324 4.57193 
14 3.16136 4.28877 2.99237 4.58333 
15 3.18882 4.29828 3.01885 4.59381 
16 3.21391 4.3071 3.04309 4.60351 
17 3.23698 4.31532 3.06543 4.61252 
18 3.25831 4.32301 3.08612 4.62094 
19 3.27811 4.33024 3.10537 4.62882 
20 3.29658 4.33705 3.12336 4.63625 

 
 

Table 9: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,20, from GLE distribution case II 
MCMC w1=w2=w3=w4=w5=w6=0 Lindley w1=w2=w3=w4=w5=w6=0 
s LY:s UY:s LY:s UY:s 
1 0.562574 2.00062 0.49741 2.14966 
2 1.04009 2.2106 0.958697 2.37733 
3 1.32532 2.35793 1.24135 2.53537 
4 1.53127 2.47761 1.44764 2.66313 
5 1.69538 2.58157 1.6129 2.77385 
6 1.83401 2.67558 1.75285 2.87388 
7 1.95578 2.763 1.87589 2.96692 
8 2.06582 2.84604 1.98706 3.05538 
9 2.16746 2.92633 2.08966 3.14106 
10 2.26308 3.00521 2.18607 3.22542 
11 2.35447 3.08385 2.27807 3.3098 
12 2.44313 3.16347 2.36715 3.39554 
13 2.53037 3.24538 2.45464 3.48417 
14 2.6175 3.33123 2.54184 3.57759 
15 2.70597 3.42323 2.63019 3.67843 
16 2.7976 3.52475 2.72146 3.79068 
17 2.89493 3.64146 2.81818 3.92116 
18 3.00219 3.78446 2.92446 4.08332 
19 3.12787 3.98115 3.04867 4.31048 
20 3.29658 4.33705 3.21517 4.73082 
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Table 10: 95% two-sample Bayesian prediction bounds for Ys,m,s = 1,...,20, from GLE distribution case II for hyper 
parameters w1 = 2,w2 = 3,w3 = 1,w4 = 1,w5 = 2,w6 = 3 
MCMC w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 Lindley w1=2,w2=3,w3=1,w4=1,w5=2,w6=3 
s LY:s UY:s LY:s UY:s 
1 1.24497 3.83974 1.08895 4.04442 
2 1.96905 3.97768 1.81567 4.22018 
3 2.30715 4.05058 2.15679 4.30927 
4 2.51196 4.09936 2.36124 4.36742 
5 2.6536 4.13569 2.50105 4.40999 
6 2.75956 4.16446 2.60468 4.4433 
7 2.843 4.18819 2.68573 4.47049 
8 2.91114 4.20832 2.75159 4.49338 
9 2.96831 4.22576 2.80668 4.51309 
10 3.01727 4.24113 2.85379 4.53036 
11 3.05592 4.25484 2.89477 4.54568 
12 3.09755 4.26721 2.93094 4.55945 
13 3.13112 4.27846 2.96324 4.57193 
14 3.16136 4.28877 2.99237 4.58333 
15 3.18882 4.29828 3.01885 4.59381 
16 3.21391 4.3071 3.04309 4.60351 
17 3.23698 4.31532 3.06543 4.61252 
18 3.25831 4.32302 3.08612 4.62094 
19 3.27811 4.33022 3.10537 4.62882 
20 3.29658 4.33705 3.12336 4.63625 

 
 

4.1. Conclusion 
We assume the real data to have come from the 

GLE distribution. Based on the above two Type-II 
hybrid censoring schemes, we construct 95% one-
sample Bayesian prediction intervals for future order 
statistics Xs,n,s = 16,...,20, from the same sample as 
well as 95% two-sample Bayesian prediction intervals 
for future order statistics Ys:m,s = 1,...,20, from a future 
sample of size m = 20. 

From Tables 5-10 the following are observed. 
1- From Tales 5-10, it is clear that, the lower 

bounds are relative insensitive to the specification of 
the hyper parameters (w1,w2,w3,w4,w5,w6) while the 
upper bounds are almost insensitive. 

2- Moreover, Tables 5-10 show that the 
Bayesian prediction bounds based on Lindly 
approximation are more close to each other to the 
specification of the hyper parameters 
(w1,w2,w3,w4,w5,w6) than the Bayesian prediction 
bounds based on MCMC method. 
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