Influence of Moringa (*Moringa oleifera*) and Rosemary (*Rosmarinus officinalis*), and Turmeric (*Curcuma longa*) on Immune parameters and Challenge of Nile tilapia to *Aeromonas hydrophila*

Hala F. Ayoub	extsuperscript{1},* Mohamed M. El Tantawy	extsuperscript{1}, and Hany M.R. Abdel-Latif	extsuperscript{2}

	extsuperscript{1}Fish health and Diseases department, Central Laboratory for Aquaculture Research, (CLAR), Abbassa, 44662, Abo-Hammad, Sharkia, Egypt

	extsuperscript{2}Department of Poultry and Fish Diseases, Faculty of Veterinary medicine, Alexandria University, Edfina, 22758, Behera, Egypt.

*Corresponding author: - dr.halakg@hotmail.com

Abstract: The immune potentiating activities of three medicinal plants; Moringa (*Moringa oleifera*), Rosemary (*Rosmarinus officinalis*), and Turmeric (*Curcuma longa*) leaves on Nile tilapia and their challenge with *Aeromonas hydrophila* was assessed. Fish were grouped into 4 treatments; the first one was fed with isonitrogenous and isoenergetic diets supplemented without addition of any supplement (control group) (T1), the other groups were supplemented with 1% dietary *C. longa* (T2), 1% dietary *M. oleifera* (T3) and 1% dietary *R. officinalis* (T4). Fish in all groups were fed for 2 months on the experimental diets. Blood was sampled biweekly. Albumin, globulin, and total protein were measured in serum samples. Additionally, lysozyme and respiratory burst activity were evaluated. After the period of the feeding experiment, treated fish were infected intraperitoneally with *A. hydrophila* and relative percent of survival (RPS) was calculated. It was noticed that serum albumin, globulin, and total protein was considerably improved in treated fish in comparison with control one. As well, serum lysozyme and respiratory burst activity in the fish group fed a diet with *C. longa* (T2) were higher than other groups (T3 and T4) and all the three treated groups were significantly improved in relation to the control group. Results, also, revealed that RPS was 10, 75, 70, and 65% for treated fish groups respectively. It can be concluded that the incorporation of *C. longa*, *M. oleifera*, or *R. officinalis* in diets of Nile tilapia can be helpful for improvement of the immune response towards the emerging diseases.

[Keywords: *Curcuma longa* - *Moringa oleifera* - *Rosmarinus officinalis* - *Oreochromis niloticus* – Lysozyme – Respiratory burst activity]

1. Introduction

Nile tilapia, *Oreochromis niloticus* is one of great consequence cultured fish worldwide (Davlin, 1991 & Pullin, 1997). *Aeromonas hydrophila* is among the dangerous pathogenic bacterial pathogens of fish that encountered in great losses of tilapia culture in Egypt (Karunasagar et al., 2003). As well, it was found that the use of antimicrobials showed reduced abilities in the prevention or control of fish diseases (Subasinghe, 1997). Also, the continuous application of broad-spectrum antibiotics will lead to the development of resistant strains that are difficult to be controlled, so finding alternatives for antibiotics is an urgent need.

Turmeric (*Curcuma longa*), is one of *Zingiberaceae* family (Aggarwal et al., 2007 & Chan et al., 2009) and is intensely utilized as a food preservative, and beneficial coloring material in several countries especially India. Curcumin is the major active ingredient of *C. longa* (El-Bahr et al., 2007 & Hatcher et al., 2008). Several more values of using turmeric as feed additives. Turmeric can improve the immune response of various fishes in the face of the invading pathogens. Sahu et al. (2008) have demonstrated that turmeric can improve the immune response and produce prolonged protection of rohu, *Labeo rohita* infected with *A. hydrophila*. Additionally, Sivagurunathan et al. (2011) have documented that feeding Zingiber officinale and *C. longa* together has proven to enhance the immune response of *Cirrhinus mirgala* challenged with *Pseudomonas aeruginosa* (*Ps. aeruginosa*). As well, the supplementation of 0.50% turmeric improved the growth parameters and help in the protection of fish against *Ps. fluorescens* (Mahmoud et al., 2014). In Common carp, Al-Faragi and Hassan (2017) found that the growth rate was improved and with increased survival rate when challenged with *Flavobacterium columnaris* when turmeric was supplied in fish diets. Furthermore, for *O. niloticus*, Curcumin has proven to have immunomodulatory with antimicrobial properties against *Vibrio alginolyticus* (Elgendi et al., 2016). For fish health status, Yusuf et al. (2017) demonstrated that the supplementation of turmeric in
diets of *O. niloticus* help in improvement of growth parameters, intestinal fold length, and lowering the fecal coliform count in relation to total bacterial count.

Rosemary (*Rosmarinus Officinalis* L.) (family Lamiaeae) is frequently used as a spice with a desirable flavor so can be used in food processing. The rosmarinic and carnosic acids are the most important ingredients of *R. officinalis* with antioxidant and antimicrobial activities (Erkan et al., 2008).

The use of dried leaves of rosemary increases the protection against *Streptococcus agalactiae* (Zilberg et al., 2010) and *Streptococcus iniae* in *O. niloticus* (Abutbul et al., 2004). Furthermore, they can boost the health condition of Seabass (Yilmaz et al., 2012), improved the growth, disease resistance and immunity of *O. mossambicus* (Ergün et al., 2011).

Moringa oleifera (family Moringaceae), is possessing a wide range of medical advantages with high nutritional value (Tahany et al., 2010). *M. oleifera* leaves can be incorporated as a protein source in fish diets (Chiseva, 2006) with substantial bactericidal activity (Caceres et al., 1991 & Suarez et al., 2005). *M. oleifera* leaves can be administered as protein alternate in the diet of *L. rohita* and *Clarias gariepinus* up to inclusion level of 10% (Bello and Nzew, 2013; Arsalan et al., 2016; Ezekiel et al., 2016 & Mehdì et al., 2016). In addition, seed meal of *M. oleifera* has been successfully used as a protein source in *O. niloticus* diets (Hashem et al., 2017). As well, Puucha et al. (2017) documented that the supplementation of leaves of *M. oleifera* helps in growth improvement and efficient utilization of feed of *Pangasius bocourti*.

In this context, the beneficial effects of leaves of three medicinal plants; *Curcuma longa*, *Rosmarinus officinalis*, and *Moringa oleifera* on the non-specific immune response of Nile tilapia and its survival towards *A. hydrophila* were assessed.

2. Materials and Methods

1. Diet preparation: -

 Rosemary (*R. officinalis*), Moringa (*M. oleifera*), and Turmeric (*C. longa*) plant leaves were obtained from Kemet Co. (Egypt). Leaves were dried, crushed and minced each alone then mixed with isonitrogenous (25 % protein) and isoenergetic diets with a concentration of 1% of each plant. The mixture was pelleted and let to air dry then stored in a refrigerator at 4°C until use.

2. Fish and Experimental setup: -

 A total of 240 obviously healthy *O. niloticus* (with average body weight 35±5 g / fish) were gotten from Central Laboratory for Aquaculture Research (CLAR), Abbassa, Abo-Hammad, Sharkia, Egypt. Fish were transported to Fish health Laboratory and were kept 14 days under observation for acclimation in glass aquaria (40×60×50 cm) supplemented with continuous aeration. pH should be maintained at 7±1 and temperature at 25±1°C. One-third of the water column was replaced daily.

 Fish were grouped into 4 treatments with 3 replicates (20 fish/aquaria); group 1 (T1): Fish fed on basal diet without any additives (control group), group 2 (T2): Fish fed diet + 1% *C. longa*, group 3 (T3): Fish fed diet + 1% *M. oleifera*, and group 4 (T4): fish fed diet + 1% *R. officinalis*. Fish were fed 3% of their body weight and the diets were offered twice per day. The experiment continued for 8 weeks.

3. Blood samples: -

 Fish were anesthetized with Tricaine Methanesulfonate (MS 222) and blood was biweekly sampled from four fish of each group from the caudal veins (Lied et al., 1975) into clean dry and the other one without anticoagulant was used for preparation for sera separation. Samples were centrifuged 3000 rpm for 10 minutes for serum separation.

3.1. Determination of serum proteins: -

 Total protein (g/dL) (Lowry et al., 1951) and albumin (g/dL) (Doumas et al., 1971) were assayed. As well, globulin (g/dL) was calculated by subtraction of albumin from total protein.

3.2. Determination of immune parameters:

 Serum lysozyme activity was measured spectrophotometrically (Schaperclaus et al., 1992 & Gopalakannan and Arul, 2006). Respiratory burst activity was measured by the reduction of Nitro Blue Tetrazolium (NBT) (Graham and Secombes, 1990 & Stasiak and Baumann, 1996).

4. Challenge test:

4.a. Preparation of the bacterial strain: -

 A. hydrophila was previously isolated from the liver of diseased *O. niloticus* from Abbassa fish farm, and the identified strain was kindly provided by Fish health Laboratory, Central Laboratory for Aquaculture Research, (CLAR), Abbassa, which was used for the challenge test.

 The bacterial isolate was then sub-cultured in brain heart infusion (BHI) broth at 28 C for 24 hrs. Bacterial pellets were then captured after centrifugation of the broth solution. Bacterial pellets were then suspended in sterile physiological buffer saline (PBS) solution and adjusted at McFarland No. 0.5 (1.5 × 10⁸ CFU/ml).

4.b. Experimental challenge: -

 After the end of the experiment, fish in all groups were (IP) intraperitoneally challenged with the prepared *A. hydrophila* strain (0.2 ml of per fish) (Wakabayashi et al., 1981 & Badran, 1987).

 Daily mortalities were recorded for 10 consecutive days and the relative percent survival
(RPS) was estimated (Amend, 1981) with this formula;
RPS = 1 - (% mortality in challenged fish / % mortality in control fish) x 100.

Statistical analysis:
Serum measurements were analyzed (means ± SD) using one-way analysis of variance (ANOVA) using (software SPSS version 17) (SPSS Inc., Chicago, IL, USA). Differences between means were determined and compared using Duncan’s test and considered significant at p <0.05.

3. Results
1. Blood parameters:
It was found that serum proteins (total protein, albumin, and globulin) values in all treatments were significantly elevated than control one (Table 1 and Fig. 1, 2 & 3).
By the end of the 8th week, there was a substantial elevation (P < 0.05) in serum total protein values (g/dL) in the group fed on diet with C. longa, M. oleifera, and R. officinalis when compared with control group (3.85±0.03, 3.76±0.02, 3.57±0.02, and 2.74±0.04 respectively) and the albumin values (g/dL) were (1.77±0.15, 1.55±0.08, 1.50±0.01 and, 1.27±0.03 respectively). Meanwhile, the globulin values (g/dL) were (2.48±0.04, 2.26±0.03, 2.23±0.02 and 1.43±0.03 respectively).

Table 1: Effect of different treatments on serum total protein, albumin & globulin of O. niloticus after the end of the feeding experiment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Serum total protein (g/dL)</th>
<th>Serum albumin (g/dL)</th>
<th>Serum globulin (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.74±0.04c</td>
<td>1.27±0.03c</td>
<td>1.43±0.03c</td>
</tr>
<tr>
<td>T2</td>
<td>3.85±0.03a</td>
<td>1.77±0.15a</td>
<td>2.48±0.04a</td>
</tr>
<tr>
<td>T3</td>
<td>3.76±0.02a</td>
<td>1.55±0.08b</td>
<td>2.26±0.03b</td>
</tr>
<tr>
<td>T4</td>
<td>3.57±0.02b</td>
<td>1.50±0.01b</td>
<td>2.23±0.02b</td>
</tr>
</tbody>
</table>

Means with the same letters within the same column are not significantly different at P < 0.05.

Fig. 1: - Total protein values (g/dL) in sera of different experimental treatment groups of Nile tilapia.

Fig. 2: - Albumin values (g/dL) in sera of different experimental treatment groups for Nile tilapia.

Fig. 3: - Globulin values (g/dL) in sera of different experimental treatment groups for Nile tilapia in comparison to control one.
2. Immune parameters: -
 2.a. Serum lysozyme activity: -
 Our results revealed that T2, T3, and T4 groups enhanced the lysozyme activity from 2nd week until the end of the experiment in relation to the control group (Table 2 and Fig. 4). Additionally, by the end of 8th week of feeding, curcumin group (T2) showed elevated serum lysozyme activity over the other treatments (T3, and T4) and control group (T1) (3.46±0.03, 3.27±0.02, 3.16±0.02 and 1.30±0.01 respectively).

 2.b. Respiratory burst activity by measuring Nitro blue tetrazolium activity (NBT):
 The results of NBT in this study revealed that the T2 group was appreciably elevated than other groups (T3 and T4). By the end of 8th week, the results were (0.678±0.01, 0.655±0.01 and 0.632±0.01) (P < 0.05) (Table 2 and Fig. 5).
 However, the best results obtained from moringa group by the end of the 8th week in relation to the control one (0.655±0.01 and 0.510±0.01 respectively).

 Table 2: Effect of treatment groups on NBT and lysozyme values at the end of the experiment for O. niloticus.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NBT (mg/ml)</th>
<th>Lysozyme (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.510±0.01 d</td>
<td>1.30±0.01d</td>
</tr>
<tr>
<td>T2</td>
<td>0.678±0.01a</td>
<td>3.46±0.03a</td>
</tr>
<tr>
<td>T3</td>
<td>0.655±0.01b</td>
<td>3.27±0.02a</td>
</tr>
<tr>
<td>T4</td>
<td>0.632±0.01c</td>
<td>3.16±0.02b</td>
</tr>
</tbody>
</table>

Means with the same letters within the same column are not significantly different at P < 0.05.

 Table 3: -Relative percent survival (RPS%) after a challenge by A. hydrophila.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mortality rate %</th>
<th>RPS%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>T2</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>T3</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>T4</td>
<td>35%</td>
<td>65%</td>
</tr>
</tbody>
</table>

Discussion
Immunostimulants not only enhances the immune system but also help in preventing infectious diseases (Watanuki et al., 2006). Phytobiotics, medicinal herbs possess immune-stimulating abilities with proven bactericidal activities against numbers of pathogenic bacteria affecting man, animal, and fishes and are possible alternatives to antibiotics (Khan et al., 2009).

Serum proteins (albumin, and globulin) have a substantial part in fish immunity (Kumar et al., 2007) and the rise of their values are an important indicator that fish have excellent humoral immunity of fish (Wiegertjes et al., 1996), and they were increased especially when plant extracts were incorporated in fish diets (Misra et al., 2006).

Our findings indicate an improvement of the fish health status and these results were in concordance with that of Bairwa et al. (2012), Basha et al. (2013) and Sahu et al. (2007) in L. rohita. As well, a significant increase in these values was documented in Cyprinus carpio (C. carpio) fed on diets containing Chinese herbs (Yuan et al., 2007). Nevertheless, the best values of serum total protein were obtained from curcumin group which agrees with El-Bahr and Saad (2008), Elgendy et al. (2016), and Hassan et al.
(2018) who attributed the preferred effect of turmeric to its potent antioxidant and hepatoprotective properties. Additionally, Abdel Zaher et al. (2009) illustrated that diet incorporated with turmeric seed meal considerably improved the globulin value in Nile tilapia serum. The elevation of serum globulin is strongly associated with a potent innate immunity of fish (Nayak et al., 2004).

The lysozyme, one of the most important elements of fish defense mechanisms and it possesses its action by the activation of the complement system and phagocytosis (Magnadóttir, 2006). Additionally, lysozyme possesses bactericidal activity (Saurabh and Sahoo, 2008). Our findings were parallel to that obtained by Ardo et al. (2008) who documented an increase in the lysozyme activity in Nile tilapia fed on Astragalus membranaceus and Lonicera japonica herbs each alone or together after one week of feeding. NBT assay is predominantly measurement of the production of free oxidative radicals by leukocytes in the defense in the face of fish pathogens (Cook et al., 2003 & Sahoo et al., 2005). The results were in parallel to that of Antony et al. (1999) who reported that Curcuminoids have good inhibitory effects on reactive oxygen species (ROS) production. Furthermore, the augmentation of the fish immune system fed on Curcumin diet was attributed to through activation of secretion of the digestive enzymes (Rojtinnakorn et al., 2012). A similar finding was defined by Richter et al. (2003) who documented that M. oleifera leaf can replace about 30% of fish meal in the diet of O. niloticus.

It was clear that immune response of fish was good and that appear from survivability and protection that may be attributed to polysaccharide in C. longa, which had been described to display the phagocytic activity (Gonda et al., 1992). In the field of aquaculture, Curcumin showed antibacterial activity against fish pathogenic bacteria in O. niloticus (Muniruzzanian and Chowdhury, 2004 & Rattanachaikunsonpon and Phumkhachorn, 2010) and increase serum bactericidal activity and activate phagocytosis (Sahu et al., 2008). However, Moringa groups gave good protection and survival rate which agree with the findings of Hussein (2016). As well, Curcumin mechanism based on suppression of bacterial cell proliferation (Rai et al., 2008) and disruption of prokaryotic cell division (Kaur et al., 2010).

Conclusions
Phytobiotics are not only served as a natural substitute of antibiotics overuse but also, they can boost the fish immunity in the face of emerging diseases. From this study, it can be concluded that the leaves of C. longa, R. officinalis, and M. oleifera can enhance the immunity and elevate the protection of O. niloticus to A. hydrophila. As well, they should be recommended as additives in diets of O. niloticus, especially C. longa leaves which gave the best results in enhancement of non-specific immunity without the hazardous effects of antimicrobial overuse.

Acknowledgments
The authors wish to thank the staff members of the Central Laboratory of Aquaculture Research, CLAR for their guidance and continuous help during this work.

Conflict of Interest
The authors declare no conflicts of interest.

List of Abbreviations
NBT: Nitro Blue Tetrazolium, RLP: Relative level of protection, MS 222: Tricaine Methanesulfonate 222, RBT: Respiratory burst activity, BHIA: Brain heart infusion agar, PBS: Physiological buffer saline.

References
membranaceous and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophilia. Aquaculture, (275): 26-33.
16. Cook, M.T., Hayball, P.J., Hutchinson, W., Nowak, B.F. and Hayball, J.D. (2003): Administration of a commercial immunostimulant preparation, Eco Active™ as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrusaurus, Sparidae (Bloch and Schneider)) in winter. Fish & Shellfish Immunology, 14(4), 333-345.
20. El-Bahr, S.M., and Saad, T.T. (2008): Effect of Black cumin seeds (Nigella sativa) and/or Turmeric (Curcumin) on hematological, biochemical and immunological parameters of Mugil cephalus fish vaccinated with Aeromonas hydrophilia bacterin. In The 13th Scientific Congress, Faculty of Veterinary Medicine, Assiut University, p. 365-388.

