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Abstract: Conservation of water supplies became very important as the demand increases. Water loss due to 
seepage from open channels represents one of the major components of water loss. Seepage occurs from open 
channels to the adjacent land due to the difference in water head between the water levels in the channels and the 
water table at the adjacent land. The aim of this study is to verify Hydrus software package with analog solutions 
like Bouwer’s approach and to use Hydrus to estimate seepage from canals for many cases that cannot be solved by 
Bouwer’s approach. Synthetic realizations were generated using Hydrus. Artificial neural networks (ANNs) were 
trained and verified using previous realizations to estimate seepage from canals for two cases. The results showed 
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1. Introduction 

Conservation of water supplies became very 
important as the demand increases and it is hard to 
find new water sources. Water loss due to seepage 
from open channels represents one of the major 
components of water loss. The rates of seepage can be 
obtained by either direct measurements or by 
estimation. Seepage occurs from open channels to the 
adjacent land due to the difference in water head 
between the water levels in the channels and the water 
table at the adjacent land.  

Several analytical solutions for steady state 
seepage from open channels were developed by some 
researchers. For example, the seepage from open 
channels by curvilinear cross section in very deep soil 
with no water table is treated [1]. Moreover, solutions 
to the seepage from trapezoidal channels to drainage 
layers at finite and infinite depths were proposed [2]. 
A solution for the seepage problem from an open 
channel embedded in uniform soil with a shallow 
water table that merges with the channel water level 
was proposed [3]. Electric resistance network analogs 
in studying the seepage from open channels was used 
[4-5]. The approach of Bouwer covers a wide range of 
water depths in channels, channel shapes, soil 
conditions, and positions for the water table. He also 
presented readily applicable graphs. 

Simple algebraic equations for seepage loss 
computation from trapezoidal, rectangular, and 
triangular canals have been proposed [6]. Using these 
equations and the uniform flow equation, equations to 
determine the design variables to achieve minimum 
seepage loss from channel sections have been obtained 
for each shape of the three channel sections by 
applying Lagrangian optimization technique. 

The seepage analysis of lined and unlined 
irrigation channels has been done using equations 
derived by Swamee et al. [7]. Their results showed 
that lining of canals can reduce seepage from canals 
by nearly 95%. 

Analytical solutions that estimate the seepage 
rate from canals are over simplified due to its several 
assumptions that are rarely met in the field. Hence, 
there is a need to create a tool that is capable of 
estimating seepage with practical conditions. Due to 
the increase in computer speed, and the availability of 
numerical models which simulate the distribution of 
water content in saturated and unsaturated soils, 
several researchers became interested in using these 
models. Hydrus (2d/3d) is a famous computer 
software package that is capable of simulating the 
movement of water in variably saturated porous 
media. The verification of this model in simulating 
soil water distribution and movement were done by 
many researchers. For example, Hydrus-2d was used 
to simulate water flow and distribution around a line 
source in the unsaturated zone [8]. The results were 
compared with observed field data taken from sandy 
loam soil. An excellent agreement between the 
observed and simulated soil moisture data was found. 

Hydrus-2dwas used to simulate the distribution 
of soil water content around porous clay pipe in the 
vadose zone [9]. A good agreement was observed 
between the simulated and measured water contents. 
More over, a correlation coefficient of 0.98 was 
observed between the measured and simulated water 
contents. 

Hydrus (2d/3d) is a software package which 
simulates the flow of water in a variably saturated 
porous media by solving Richard’s equation 
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numerically using a Galerkin finite element method. 
This equation is shown below. 
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Where Ɵ is the volumetric soil water content (L3 
L-3), h (L) is the soil water matric head, z (L) is the 
depth, and K is the unsaturated hydraulic conductivity 
tensor (LT-1). 

Richard’s equation is nonlinear for unsaturated 
flow as the volumetric soil water content and 
hydraulic conductivity K are nonlinear functions of the 
dependent variable soil moisture pressure head. In 
order to solve this equation, explicit expressions 
between the dependent variable matric head and the 
nonlinear terms Ɵ and K are required. There are many 
soil moisture relationships reported in literature. The 
most popular ones are by Van [10] where the closed 
form relationship between Ɵ and h developed by 
fitting mathematical equations to measured 
experiments data yields the following equation [10]. 
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where Ɵ is moisture content at soil matrix 

potential; Ɵr is residual water content; Ɵs is saturated 
water content; h is soil water matric head; and m, n, 
and α are curve fitting parameters. The statistical pore 
size distribution model of [11] was used by [10] along 
with Eq. (2) to yield the relationship between K and h. 
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where Ks is the saturated hydraulic conductivity 

of the soil, �  is a pore-connectivity parameter, and 
�� and m are calculated form the following explicit 
equations: 
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Artificial neural networks (ANNs) have been 

used in many applications related to groundwater. For 
example, ANNs were used to predict soil water 
retention and saturated and unsaturated hydraulic 
conductivity from textural classes [12]. 

The aim of this study is to create two neural 
networks that can predict seepage rate from canals for 
two cases. This can be done by verifying Hydrus 
(2d/3d) software package with analog solutions like 
Bouwer’s approach and to use Hydrus to generate 
synthetic realizations to estimate the seepage from 

canals for different canal water depth (y), different 
height between canal water level and groundwater 
table at ten times the bed width (ha), different distance 
between the canal bed and the bottom impervious 
layer (Da), different canal side slopes (t), and different 
soil types (Fig. 1). ANNs were trained and verified 
using the previous realizations to estimate seepage 
from canals for the first case. Another case of seepage 
from canals with different parameters was analyzed 
(Fig. 2). In the second case, there is a pervious layer at 
the bottom of the simulated domain and the ground 
water table is far and deep in this pervious layer. 
Hydrus was used to generate synthetic realizations to 
estimate the seepage from canals for different canal 
water depths (y), different height between canal water 
level and the pervious layer (hb), and different canal 
side slopes (t). ANNs were trained and verified using 
the previous realizations to estimate seepage from 
canals for the second case. 

 

 
Fig. 1. Parameters for the first case. 

 

 
Fig. 2. Parameters for the second case. 

 
McCulloch and Pitts developed the concept of 

ANNs in 1943. ANNs are models that simulate the 
structure and functioning of the human brain. An ANN 
is a massively parallel-distributed information-
processing system that has certain performance 
characteristics resembling biological networks of the 
human brain (e.g., [13-14]). ANNs were developed 
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based on assumptions that information processing 
occurs at many neurons, signals pass between neurons 
through links, the signals transmitted are multiplied by 
associated weights of the links, and each neuron 
applies an activation function to determine its output 
signal [15]. ANNs were used in modelling many 
hydrologic processes such as rainfall-runoff, water 
quality simulation, stream flow, precipitation analysis, 
and groundwater management. 

 
2. Materials And Methods 

The simulated domain of a sample of realizations 
(first run in table 1) is 20 m width and 10 m depth as 

shown in Fig. 3. The ground water level at ten times 
the bed width of the canal is below the soil surface by 
6 m. Existing irrigation canal at the upper left corner 
of the simulated domain has 2 m bed width, 1 m water 
depth, 1:1 side slope, and 1 m free board. An 
impervious layer is located at a depth of 10 m at the 
bottom of the simulated domain. The flow domain was 
discretized with 8293 nodes and 16276 triangular 
elements. The dimensions of the finite elements grid 
were small enough to achieve high accuracy and avoid 
instability (Fig. 4). The finite element mesh was 
generated using the automatic triangulation algorithm 
that is implemented in HYDRUS [16]. 

 
Table 1 Seepage rate from canal using Bouwer’s solution and Hydrus software for different canal water 
depths, different height between canal water level and groundwater table at ten times the bed width, different 
distance between the canal bed and the bottom impervious layer, and different soil types. 

No. y (m) h (m) D (m) b (m) 
Side 
slope 

Soil 
type 

K (m/d) 
Bouwer’s seepage 
rate (m3/d/m) 

Hydrus Seepage rate (m3/d/m) 

1 1 5 8 2 1:1 Loam 0.25 0.649 0.650 
2 0.5 5 8 2 1:1 Loam 0.25 0.524 0.531 
3 1.5 5 8 2 1:1 Loam 0.25 0.749 0.757 
4 1 4 8 2 1:1 Loam 0.25 0.549 0.559 
5 1 6 8 2 1:1 Loam 0.25 0.699 0.714 
6 1 5 6 2 1:1 Loam 0.25 0.499 0.499 
7 1 5 10 2 1:1 Loam 0.25 0.749 0.755 
8 1 5 8 2 1:1 Sandy Loam 1.06 2.759 2.749 
9 1 5 8 2 1:1 Clay Loam 0.06 0.162 0.163 
10 1 5 8 2 1:1 Sandy clay 0.03 0.075 0.075 

 

 
Fig. 3. Geometry for the simulated domain (first 
case). 
 

 
Fig. 4. Finite element mesh of the simulated domain 
(first case). 
 

The boundary condition is assigned as no flux to 
all the edges of the simulated domain except the upper 
left corner and the bottom right side. The upper left 
corner around the channel, the boundary condition is 
constant head with time and variable head with depth. 
The pressure head changes linearly from zero at the 
water surface to y at the bottom of the channel. The 
bottom right side has a boundary condition of constant 
head with time and variable head with depth. The 
pressure head varies linearly from zero at the water 
surface to (Da + y – ha) at the bottom right corner (Fig. 
5). 

The soil is assumed as loam and its hydraulic 
parameters are taken from a soil catalog in Hydrus. 
The parameters of the loam soil from this catalog are 
Ɵs = 0.43, Ɵr = 0.078, α = 3.6 m-1, Ks = 0.2496 m d-1, 
n = 1.56 and l = 0.5. The parameters in this catalog 
were taken from [17] for the van Genuchten model. 
The initial soil profile is assumed as variable pressure 
head. The pressure varies linearly with depth. It has a 
value of 4 m at the bottom of the domain and -2 m at 
the soil surface as shown in Fig. 6. The final time is 
assigned as a large number (1000 days) in order to 
reach the steady state condition. The initial condition 
does not affect the soil water distribution at the steady 
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state but it should be assigned to Hydrus (2d/3d) to 
start computations. 

 

 
Fig. 5. Boundary conditions for each side of the 
simulated domain for the first case. 
 

Fig. 6. Initial condition for the simulated domain. 
 

In order to verify Hydrus (2d/3d), ten runs were 
performed using Hydrus (2d/3d) to estimate the 
seepage from the canal to the groundwater. The 
seepage results from Hydrus (2d/3d) is compared by 
the results of Bouwer analog solutions as shown in 
table 1. Moreover, Hydrus (2d/3d) is used to estimate 
seepage rate to the groundwater for one hundred 
realizations. The one hundred realizations are used to 
train and verify the ANN for the first case. The 
suitable number of realizations required to train and 
verify the network is determined by trial and error 
until the correlation coefficient between the output 
values from ANNs and the targets is close to one after 
testing the network. The network is trained to produce 
the ratio between the discharge and the multiplication 
of saturated hydraulic conductivity and the bed width 
Q/(Ksb) when it receives the ratio between the canal 
water depth and the canal bed width (y/b), canal side 
slope (t), the distance between the bed of the canal and 
the impervious layer divided by canal bed width 
(Da/b), the distance between the canal water level and 
the groundwater level at ten times the bed width 
divided by the canal bed width (ha/b) as shown in Fig. 
7. 

The design of the ANN is the determination of 
the number of hidden layers and the number of nodes 
in each hidden layer. This is achieved by trial and 
error. The input and output layers have pre-fixed 
numbers of nodes determined based on the training 
data groups. The input layer of the neural network has 

four nodes that receive (y/b), (t), (Da/b), and (ha/b), 
while the output layer has one node corresponding to 
Q / (Ksb). The best design for this network is two 
hidden layers. The first hidden layer has 5 nodes while 
the second hidden layer has 9 nodes. The two hidden 
layers have tan-sigmoid transfer, whereas the output 
node has a linear transfer function as shown in Fig.7. 

 

 
Fig. 7 Structure of the neural network. The hidden 
layers nodes have a tan-sigmoid transfer function 
and the output layer node has a linear transfer 
function. 

 

 
Fig. 8 A record of the ANN training and validation 
errors during the training process. 

 
The input and output vectors generated according 

to Hydrus (2d/3d) are used to train the network. 
Before training process, the input and output vectors 
are normalized to a new group with unit standard 
deviation and zero mean. Then, the data is divided into 
two groups. The first group is the training group while 
the second is the validation group. The first group 
consists of two thirds of the data while the second 
group consists of the remaining third of the data. The 
first group is introduced to the ANNs to adjust its 
weights and extract the required input-output relation 
while the second group is used to prevent over fitting 
of the ANNs. This is achieved by stopping the training 
of the ANNs when the validation accuracy for the 
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second group deteriorates. This is an indication of over 
fitting for the relationship between the input and 
output (Fig.8). Although the validation group is used 
during the training of the ANNs, it does not affect the 
learning relationship between input and output. It is a 
control group to ensure better generalization and 
prevent over fitting of the trained ANNs when it used 
with other realizations. 

 

 
Fig. 9. Boundary conditions for each side of the 
simulated domain for the second case. 
 

 
Fig. 10 Structure of the second neural network. 
The hidden layers nodes have a tan-sigmoid 
transfer function and the output layer node has a 
linear transfer function. 
 

Sixty synthetic realizations was generated using 
Hydrus for the second case. The boundary conditions 
for this case is assigned as “No Flux” for all edges 
except the bottom edge and the upper left corner as 
shown in Fig. 9. The bottom edge is assigned as “Free 
Drainage” and the upper left corner is assigned as 
constant pressure head with time variable with space. 
The pressure head is 0 at the water surface while it is 

equal the water depth at the bottom of the channel and 
it varies linearly between the two positions. Steady 
state simulation was performed by assigning the final 
time with a large number (1000 days) in the unsteady 
state. The previous realizations have different water 
depths, different side slopes, and different height 
between canal water level and the pervious layer. 
Another ANN was trained and validated for the 
second case to predict Q / (Ksb) when it receives (y/b), 
(t), and (hb/b) as shown in Fig.10. The input and 
output layers have pre-fixed numbers of nodes 
determined based on the training data groups. The 
input layer of the second neural network has three 
nodes that receive (y/b), (t), and (hb/b), while the 
output layer has one node corresponding to Q / (Ksb). 
The best design for this network is two hidden layers. 
The first hidden layer has 5 nodes while the second 
hidden layer has 10 nodes. The two hidden layers have 
tan-sigmoid transfer, whereas the output node has a 
linear transfer function as shown in Fig.10. 

The input and output vectors generated according 
to Hydrus (2d/3d) for the second case are used to train 
the network. Before training the network, the input 
and output vectors are normalized to a new group with 
unit standard deviation and zero mean. Then, the data 
is divided into two groups. The first group is the 
training group while the second is the validation 
group. The second network is trained until the 
validation accuracy for the second group deteriorates. 
This is an indication of over fitting for the relation 
between the input and output (Fig.11).  

 

 
Fig. 11 A record of the ANN training and 
validation errors during the training process. 
 
3. Results and Discussions 

A comparison between the seepage rates from 
irrigation canal estimated using Bouwer’s analog 
solution and using a numerical model, Hydrus (2d/3d), 
is performed. Ten simulations were performed using 
Hydrus (2d/3d) and Bouwer’s analog solution for 
different canal water depths, different height between 
canal water level and groundwater table at ten times 
the bed width, different distance between the canal bed 
and the bottom impervious layer, and different soil 
types for the first case. The results from Hydrus 
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(2d/3d) and Bouwer’s solutions are plotted against 
each other, Fig. 12. The best line that fits the relation 
between Hydrus (2d/3d) and Bouwer’s solutions is 
also plotted with its equation and the correlation 
coefficient between the two solutions is also 
presented. The slope of the best line is 0.9951 which is 
very close to one and the y intercept is 0.0074 which is 
very close to zero. Moreover, the correlation 
coefficient between the two solutions is 0.9999 which 
is very close to one. This means that the results 
estimated using Hydrus (2d/3d) are very close to the 
estimated using Bouwer’s analog solution. This is an 
indication that Hydrus (2d/3d) is verified and can be 
used to estimate the seepage from canals with high 
accuracy. 

 

 
Fig. 12. Relation between Bouwer solution and 
Hydrus solution. Moreover, the best line that fits 
the data is presented with its equation and 
correlation coefficient 

 
Bouwer’s analog solution is limited to canal side 

slope of 1:1, homogenous soil, and regular domain 
geometry. These conditions are rarely met in the field. 
Hence, there is a need to use a tool that is capable of 
estimating canal seepage rate without the previous 
constrains. Hydrus (2d/3d) can do this. 

After training the first network, it should be 
tested. It should be able to predict output from input 
that has not been introduced to the network before. 
This step is known as generalization of the network. If 
the network has been properly trained, it should be 
able to generalize what it has learned to other cases 
not involved in training and validation. A group 
consisting of 10 input vectors obtained from 10 
realizations is introduced to the first network. The 
seepage predicted by the first network is then 
compared to the actual values obtained by the 
traditional approach using Hydrus (2d/3d). Fig. 13 
shows the comparison between the dimensionless 
seepage Q/ (Ksb) obtained by ANN and those obtained 
by traditional method using Hydrus (2d/3d). The 
agreement is very high between the calculated values 
using Hydrus (2d/3d) and predicted values using 
ANN. Correlation R2values between the calculated 

and predicted values is 0.9535 which indicates a very 
good agreement. From the above results it is obvious 
that the network is able to generalize what it has 
learned to new realizations. 

 

 
Fig. 13. Comparison between Q/(Ksb) calculated 
using ANNs and the traditional method using 
Hydrus (2d/3d) for the first case. 

 
After training the second network for the second 

case, it should be tested. It should be able to predict 
output from input that has not been introduced to the 
network before. A group consisting of 15 input vectors 
obtained from 15 realizations is introduced to the 
second network. The seepage predicted by the second 
network is then compared to the actual values obtained 
by the traditional approach using Hydrus (2d/3d). Fig. 
14 shows the comparison between the dimensionless 
seepage Q/ (Ksb) obtained by ANN and those obtained 
by traditional method using Hydrus (2d/3d). The 
agreement is very high between the calculated values 
using Hydrus (2d/3d) and predicted values using 
ANN. Correlation R2 between the calculated and 
predicted values is 0.9916 which indicates a very good 
agreement. From the above results it is obvious that 
the second network is able to generalize what it has 
learned to new realizations for the second case. 

 
Fig. 14. Comparison between Q/(Ksb) calculated 
using ANNs and the traditional method using 
Hydrus (2d/3d) for the second case. 
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4. Summary and Conclusions 
Seepage occurs from open channels to the 

adjacent land due to the difference in water head 
between the water levels in the channels and the water 
table at the adjacent land. The aim of this study is to 
verify Hydrus (2d/3d) software package with analog 
solutions like Bouwer’s approach and to use Hydrus to 
simulate soil water movement and distribution 
between canal water level and groundwater table to 
estimate the seepage from the canal for two cases. The 
simulations were performed at steady state by putting 
a large value to the final time in the unsteady state. 
Then, Hydrus (2d/3d) is used to make a large number 
of realizations. These realizations are introduced to the 
first ANNs to learn the relation between the input and 
target. By testing the first network, it is clear that the 
network is capable of estimating the dimensionless 
seepage Q / (Ksb) when it receives (y/b), (t), (D/b), 
and (h/b) for the first case. Moreover, testing the 
second network ensures that it is capable of predicting 
Q / (Ksb) when it receives (y/b), (t), and (h/b) for the 
second case. The correlation coefficients between the 
predicted values using ANNs and the calculated using 
Hydrus (2d/3d) are close to one which indicates a 
good prediction of the two networks. The comparison 
between the seepage rates from irrigation canal 
estimated using Bouwer’s analog solution and using a 
numerical model, Hydrus (2d/3d) for the first case 
showed that Hydrus (2d/3d) is verified and can be 
used to estimate the seepage from canals with high 
accuracy. Hydrus (2d/3d) is more efficient than other 
analytical and/or analog solutions as it can be used 
even if the existing field conditions is complicated or 
the canal cross section is irregular. The approach of 
using ANNs to estimate seepage from canals is simple, 
easy, and takes no time. 
 
List of symbols 

Da (L) is the distance between the canal bed and 
the bottom impervious layer for the first case, 

Db (L) is the distance between the canal bed and 
the bottom pervious layer for the second case, 

h (L) is the soil water matric head, 
ha (L) is the height between canal water level and 

groundwater table at ten times the bed width for the 
first case, 

hb (L) is the height between canal water level and 
the pervious layer for the second case, 

K (LT-1) is the unsaturated hydraulic 
conductivity tensor (LT-1), 

Ks (LT-1) is the saturated hydraulic conductivity 
of the soil, 

m is curve fitting parameter, 
n is curve fitting parameter, 
Q (L3T-1) is the seepage discharge from the canal, 
t is the canal side slope, 

y (L) is the canal water depths 
z (L) is the depth, 
α is curve fitting parameter, 
Ɵ is the volumetric soil water content, 
Ɵr is residual water content, 
Ɵs is saturated water content. 
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