
 Life Science Journal 2018;15(11)       http://www.lifesciencesite.com 

 

19 

A Hybrid-Based Harmony Search Algorithm for RNA Multiple Sequence Alignment 
 

Mubarak S. Mohsen, Rosni Abdullah, Mohd. Adib Omar 
 

School of Computer Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia 
mobarak_seif@yahoo.com, rosni@cs.usm.my, adib@cs.usm.my 

 
Abstract: Multiple sequence alignment (MSA) is an important topic in the field of computational molecular 
biology. Scalability, computational complexity as well as biological accuracy, are currently required for MSA 
methods. Finding an accurate alignment from primary sequences is computationally NP-hard problem. The aim of 
this study is to investigate and explore the capability of meta-heuristic technique known as harmony search 
algorithm (HS) to address MSA problem. This study introduces BHS-MSA, MHS-MSA, and HHS-MSA methods 
based on harmony search algorithm. Using a well-known benchmark (BRAliBase), the proposed method HHS-MSA 
showed better results compare to (BHS-MSA and MHS-MSA). HHS-MSA produced comparative results in terms of 
quality (Q) and total column (TC) and achieved good results in certain test groups especially alignments with large 
sequences.  
[Mubarak. S. M., Rosni A., Adib O. A Hybrid-Based Harmony Search Algorithm for RNA Multiple Sequence 
Alignment. Life Sci J 2018;15(11):19-31]. ISSN: 1097-8135 (Print) / ISSN: 2372-613X (Online). 
http://www.lifesciencesite.com. 4. doi:10.7537/marslsj151118.04. 
 
Keywords: RNA, Harmony search algorithm, Multiple sequence alignment, DCA, Conserved Blocks. 
 
1. Introduction 

Multiple sequence alignment (MSA) has become 
widely used in many different areas in bioinformatics 
such as biological sequence analysis, gene regulation 
and polymerase chain reaction primer design 
(Anbarasu et al., 2000). Moreover, MSA has 
significantly improved the accuracy of RNAs 
structures prediction (Hickson et al., 2000). For 
example, current RNA secondary structure prediction 
methods which use aligned sequences are more 
successful in gaining higher prediction accuracy than 
single sequence (Bernhart et al., 2008). Identifying the 
secondary structure of RNA molecules is the 
fundamental key to understand its biological function 
(Tsang and Wiese, 2007). 

Finding an accurate MSA from sequences is a 
challenging task. It is a time consuming and 
computationally NP-hard problem (Bonizzoni and 
Della Vedova, 2001) which motivates the researchers 
for heuristics (Thompson et al., 1994). The MSA 
problem can be considered as an optimization 
problem which aims to maximize or minimize the 
scoring function (Xu and Chen, 2009) by improving 
the quality of initial alignment (Zhang and Kahveci, 
2007).  

Over the last decade, the evolutionary and meta-
heuristic are the recent approaches to solve the 
optimization problem. Most of MSA methods are 
based on heuristics to produce near optimal alignment 
with high accurate within moderate computational 
time. In this context, many researches address MSA 
problem as optimization problem by using Genetic 
Algorithm (Wang and Lefkowitz, 2005; Notredame 
and Higgins, 1996), Particle Swarm (Xu and Chen, 

2009), Ant Colony (Liu et al., 2007), and Simulated 
Annealing (Roc, 2007).  

Recently, the number of discovered biological 
functions of RNA has increased. In addition, the RNA 
function scope has expanded, and thus RNA is not a 
passive messenger of genetic information from DNA 
to protein manufacturer as had been thought before. It 
has been found that RNA plays important roles in all 
molecular biology such as carrying genetic 
information (mRNA), interpreting the code (ribosomal 
RNA), and transferring genetic code (tRNA). It also 
performs different functions which include: catalyzing 
chemical reactions (Hansen et al., 2002), directing the 
site specific modification of RNA nucleotides and 
controlling gene expression. 

Harmony Search (HS) algorithm (Geem et al., 
2001) is a new meta-heuristic algorithm for solving 
optimization problem. HS is deemed one of the most 
efficient alternatives to seek and determine a near-
optimal solution without relying on exact yet 
computationally demanding algorithms. HS algorithm 
has shown to achieve good result in a wide range of 
optimization problems. HS algorithm has innovative 
aspects features in its operational procedure that foster 
its utilization in diverse fields such as construction, 
engineering, robotics, health and energy (Manjarres et 
al., 2013). Specifically, HS has adapted to address 
bioinformatics problems such as Mohsen et al. 
(Mohsen et al., 2010) for RNA secondary structure 
prediction and Abual-Rub et al. (Abual-Rub et al., 
2012) for protein tertiary structure prediction. Based 
on the HS success in several scientific and 
engineering optimization problems, HS might possess 
the potential to be used for the MSA. 
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The main objectives of this paper are: (1) to 
adapt the harmony search algorithm for MSA problem 
(henceforth called basic harmony search algorithm for 
MSA, BHS-MSA), (2) to improve the harmony search 
algorithm by modifying the harmony search 
improvisation stage (henceforth called modified 
harmony search algorithm, MHS-MSA), (3) to 
investigate the effectiveness of hybridization of the 
harmony search algorithm with divide-and-conquer 
approach (henceforth called hybrid harmony search 
algorithm, HHS-MSA).  

This paper is organized as follows: Section 2 
reviews the current MSA methods. Section 3 explains 
the research design and methodology used in this 
research. Section 4 discusses the experimental results 
and comparative analysis to assess the alignment 
quality. Lastly, the conclusion of the paper and future 
work are provided in section 5. 

 
2. Review of Current MSA 

Over the past years, researchers have developed 
various multiple sequence alignment methods. These 
methods differ in sequence orders, procedures and 
sequences score. Existing methods can be classified 
into the following approaches (Wallace et al., 2005; 
Edgar and Batzoglou, 2006; Mohsen and Abdullah, 
2011): exact, progressive, iterative, block-based, 
consistency-based, probabilistic, computational 
intelligence, and heuristic. 

This section provides a brief overview of meta-
heuristic optimization approaches. Operating several 
solutions simultaneously is the advantage of 
Evolutionary Algorithm (EA) and meta-heuristic. 
Moreover, Meta-heuristic combining exploratory 
search through the solution space with exploitation of 
current results (Bi, 2008). There are no restrictions on 
the number of sequences or their length. Hence, 
evolutionary algorithm is very flexible in the 
optimization with low complexity.  

Different GA methods are suggested to address 
the MSA problem (Notredame and Higgins, 1996; 
Isokawa et al., 1996; Zhang and Wong, 1997a; Jorng-
Tzong Horng et al., 2000; da Silva et al., 2008 ; 
Gondro and Kinghorn, 2007; Lai et al., 2009). For 
example, Sequence Alignment by Genetic Algorithm 
(SAGA) (Notredame and Higgins, 1996) is the earliest 
GA method applied to tackle the MSA.  

Furthermore, hybrid methods of GA are also 
used to address the MSA problem. For instance, 
Zhang and Wong (1997b) present a pairwise dynamic 
programming (DP) technique based on GA. Similarly, 
utilization of GA in progressive-based approach has 
developed by (Cai et al., 2000). Later, Wang and 
Lefkowitz (2005) produce Gen Align Refine 
algorithm, which uses a genetic algorithm to improve 
the local regions alignment leading to the 

enhancement the overall quality of global multiple 
alignments. Meanwhile, Ergezer and Leblebicioglu 
(2006) use GA as iterative approach to refine the 
alignment score obtained by progressive method. 
Using the GA to locate the cut-point in divide-and-
conquer approach has developed by (Chen et al., 
2005). With the similar combination, the genetic 
algorithm is incorporated with ant colony optimization 
which called GA-ACO (Lee et al., 2008). Likewise, 
Taheri and Zomaya (2009) have introduced the RBT-
GA which is a combination between the Rubber Band 
Technique (RBT) and the Genetic Algorithm (GA) 
meta-heuristic. An interesting attempt is the proposed 
of PASA algorithm (Jeevitesh. M.S et al., 2010) 
which uses the GA model to combine the alignment 
outputs from two MSA programs (MCoffee and 
ProbCons).  

Furthermore, Ant colony optimization (ACO) is 
used to address the MSA. Zhao (Zhao et al., 2008) 
developed an improved ant colony algorithm yet is 
more complicated. Likewise, Particle swarm 
optimization (PSO) is employed widely in addressing 
the MSA. For instance, Rasmussen and Krink (2003) 
used a combination between PSO with evolutionary 
algorithms to train the hidden Markov model 
(HMMs). Similarly, Pedro et al. (2007) presented a 
modified algorithm based on PSO to improve the 
sequence alignment previously generated by Clustal 
X. Likewise, Juang and Su (2008) produce an 
algorithm which combines the pairwise DP and the 
PSO techniques to overcome the local optimum 
problems. Based on the idea of chaos optimization, 
Lei et al. (2009) have produced chaotic PSO (CPSO). 
In the similar context, a methods of mutation-based 
binary particle swarm optimization (M-BPSO) is 
designed by (Hai-Xia et al., 2009). 

Similarly, simulated annealing (SA) algorithms 
have suggested tackling the MSA from different 
aspects. For example, Kim et al. (1994) have 
developed the multiple sequence alignment simulated 
annealing (MSASA) method. In another example, 
Uren et al. (2007) presented the MAUSA which use 
the simulated annealing to perform searching through 
the space of possible guide trees. Furthermore, SA 
algorithm is modified and combined in various 
aspects including finding a consensus sequence (Keith 
et al., 2002), selecting the cut-points (Roc, 2007), 
combining with GA algorithm (Omar et al., 2005), 
and combining with SA, GA and Monte Carlo 
methods(Joo et al., 2008). In the same way, Tabu 
Search (TS) has applied to tackle the MSA by 
implementing adaptive memory features to refine the 
MSA (Riaz et al., 2005) and exploring the iterative 
refinement techniques such as a hidden Markov model 
and an intensification heuristic (Lightner, 2008). 
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Although there are many attempts to apply the 
meta-heuristic in bioinformatics. Available meta-
heuristic methods can not solve the MSA problem 
completely and professionally. Harmony Search (HS) 
algorithm (Geem et al., 2001) is a new meta-heuristic 
algorithm for solving optimization problem. HS is 
deemed one of the most efficient alternatives to seek 
and determine a near-optimal solution without relying 
on exact yet computationally demanding algorithms. 
HS algorithm has shown to achieve good result in a 
wide range of optimization problems. Specifically, HS 
has adapted to address bioinformatics problems such 
as Mohsen et al. (Mohsen et al., 2010) for RNA 
secondary structure prediction and Abual-Rub et al. 
(Abual-Rub et al., 2012) for protein tertiary structure 
prediction. Based on the HS success in several 
scientific and engineering optimization problems, HS 
might possess the potential to be used for the MSA. 

 
3. Material and Methods 

This section explains the MSA problem, MSA 
problem modeling, RNA dataset, evaluation design, 
and the proposed methods. It contains details of 
problem representation, and objective function. BHS-
MSA, MHS-MSA, HHS-MSA method are proposed 
and explained. 
3.1 Problem Description 

MSA is the natural way to see the relation 
between sequences by making alignment between the 
primary sequences. Alignment is a method to arrange 
the sequences one over the other in a way to show the 
matching and mismatching between residues. To 
improve the alignment score, the character “–” is used 
to correspond to a space introduced in the sequence. 
This space is usually called a gap. The gap is viewed 
as insertion in one sequence and deletion in the other. 
A score value is used to measure the alignment 
performance. For clarity’s sake, the generic MSA 
problem is expressed with the following declaration: 
“Insert gaps within a given set of sequences in order 
to maximize a similarity criterion” (Zablocki, 2007). 
The MSA problem can be divided into three 
challenges, which are scalability, optimization, and 
objective function. In fact, the complexity comes from 
that all three problems must be solved simultaneously. 
The first challenge is the scalability, which is to find 
the alignment of many long sequences. The second 
challenge is the optimization, which is to find the 
alignment with the highest score based on a given 
objective function among sequences. Optimization of 
even a simple objective function is an NP-hard 
problem. The third challenge is the objective function 
(OF), which is to speed up the calculation in order to 
measure the alignment. 
3.2 Problem Modeling 

Most optimization programs that produce 
multiple sequence alignments contain two parts: an 
objective function for score the alignment, and an 
optimization procedure for improving the alignment 
with respect to the chosen objective function 
(Notredame, 2002). The MSA problem representation 
and mathematical model with the objective function 
are presented as follows: 
3.2.1 Problem Representation 

Alignment of N sequences with different lengths 
from L1 to LN, are represented as a matrix of N x M 
where each row contains gap positions. The maximum 
number of columns in the matrix is M = [αLmax], 

where Lmax = max 	���,, ��, … , ��	� , and [x] is the 
smallest integer greater than or equal to x and the 
parameter α is the scaling factor (Chellapilla and 
Fogel, 1999). The value of α may vary according to 
the alignment sequence length. It is widely 
recommended that increasing gaps number affects the 
alignment quality; hence, MSA tries to maximize the 
number of matching characters and minimize the 
number of inserted gaps (Zablocki, 2007). In the 
present study, the value of α is assigned 1 which 
allows alignment to be as long as the longest 
sequence. Thus, only necessary gaps are added.  
3.2.2 The Mathematical Model 

In order to optimize MSA, there are three basic 
components (Tsang and Wiese, 2007): (i) an objective 
function (or score function), which is the object of 
minimization or maximization; (ii) a set of variables 
which affect the value of the objective function; (iii) a 
set of constraints that allow the variables to take on 
certain values while excluding others. MSA can be 
formulated mathematically(Lei et al., 2009; Xu and 
Lei, 2010) as follows: Given group of sequences s = 

(s1,s2,…,sN) where si = sil1,sil2,......,sili, 1≤ i ≤ N, sij ∑ 
[A,C,G,U], 1≤ j ≤ li, lj is equal to the length of i-th 
sequence. Alignment of S is defined as a matrix A = 
(aij), where 1 ≤ i ≤ N, 1≤ j ≤ l, where i is the row, j is 
the column positions, and l is the length of matrix 
(number of columns). The characteristics of matrix A 

are subjected to the following: (i) aij  ∑  { - } where 
the symbol { - } denotes a gap. (ii) The ith sequence of 
A is identical with the ith of S when the gaps are 
deleted; (ii) There is no row or column formed by 
only { - } in matrix A. 

Thus, the MSA optimization problem is P = (S, 
f), where S (also called search space) is a finite set of 
solutions and the f is the score function. The score 
function maps the solution S to the real numbers value 
R, f: S → R. It assigns a cost value to each solution. 
Thus, the goal is either to find a good enough solution 
in reasonable amount of time(Dorigo and Blum, 
2005). The objective function is formulated as the 
following form: 
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Optimize f (x), 

Subject to xij  Xi, 1 ≤ i ≤ N, 1≤ j ≤ l   (1) 
 
where f (x) is an objective function, x is a 

solution or harmony composed of each decision 
variable xij (each sequence), Xi is a set of candidate 
values (gap position) for each decision variable xi, 
which becomes Xi = { xi (1), xi (2),…, xi (K)}, xi (1) < xi 

(2) <…< xi (K) for discrete decision variables; i is the 
number of decision variables (sequence number) and 
K is the number of candidate values for the discrete 
decision variables ( number of gap position for each 
sequence). 
3.2.3 Objective Function 

Sum of pair (SP) is the standard method of 
scoring the MSA (Trystram and Zola, 2007) which is 
introduced by (Carrillo and Lipman, 1988). In the SP-
score, it is assumed that the columns of the alignment 
matrix are statistically independent by ignoring the 
phylogenetic tree. The SP objective function defines 
the scores of n sequences by the sum of the scores of n 
(n-1)/2 pairwise alignments. Currently, SP objective 
function is the most widely used (Nicholas et al., 

2002). Generally, the SP is used without any prior 
knowledge of the reference alignment and it does not 
really provide any biological or probabilistic 
justification (Durbin, 1998; Shyu and Foster, 2003). 
The general form of objective function for the 
alignment consists of n sequences and m columns as 
follows: 

 
OF =∑ {��(��) − ��(��)}

�
���   (2) 

 
Where OF is the objective function, ��(��) is 

the similarity score of the column mi, ��(��) is the 
gap penalty of the column mi and �  is the sequence 
length. The similarity score of the column mi can be 
measured by the sum-of-pairs (SP). The SP-score S 
(mi) for the i-th column mi is calculated as follows: 

 

S (mi) = ∑ ∑ �(��
��

�����
���
��� ,��

�)  (3) 

 

where ��
�
 is the j-th row in the i-th column. For 

aligning two residues x and y, the substitution matrix s 
(x,y) is used to give the similarity score. 
3.3 RNA Dataset 

 
Table 1. The RNA Families Dataset Used in the Present Study 

Test Group GcvT THI Yybp -ykoy Total 

BRALiBase 
2.1 
(232 datasets) 

k5 22 69 33 124 
k7 12 32 18 62 
k10 3 17 12 32 
k15 1 5 8 14 

LocalExtR 
(90 datasets) 

k20 10 10 10 30 
k40 10 10 5 25 
k60 10 10 0 20 
k80 5 10 0 15 

Total 73 163 86 322 
 

Table 2. Sequence Length of Each Test Group 

Test Group 
Sequence length 
Avg. Min Max 

BRALiBase 
2.1 
(232 datasets) 

k5 109 96 125 
k7 110 94 131 
k10 108 94 129 
k15 110 88 137 

LocalExtR 
(90 datasets) 

k20 115 90 172 
k40 114 87 180 
k60 107 81 189 
k80 106 77 204 

 
The BRAliBase (Benchmark RNA Alignment 

dataBase) dataset (Gardner et al., 2005) is constructed 
using alignments from release 5.0 of the Rfam 
database (Griffiths-Jones et al., 2005). It is a large 
collection of hand-curated multiple RNA sequence 
alignments of 36 RNA families. The BRAliBase 2.1 

contains in total 18,990 aligned sets of sequences each 
consists of 2, 3, 5, 7, 10 and 15 sequences 
(categorized into k2, k3, k5, k7, k10 and k15 
reference sets). The BraliBase 2.1 benchmark has 
reference alignments with almost 15 sequences. Thus, 
Wang et al. (Wang et al., 2007) have designed two 
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types of datasets to verify the potential of RNA 
sequence aligners: (i) Subset of BRAliBase which is 
highly variable and suitable for local MSA (contains 
232 reference alignments) and categorized into k5, k7, 
k10 and k15 with 5, 7, 10 and 15 sequences, 
respectively. (ii) LocalEXtR which is an extension of 
BRAliBase 2.1 and comprises large-scale test groups 
with total of 90 large-scale reference alignments 
categorized into k20, k40, k60 and k80 with 20, 40, 60 
and 80 sequences reference sets, respectively. The 
subset of BRAliBase 2.1 is selected from the most 
variable dataset within the suite. They are from THI, 
Glycine riboswitch and Yybp-Tkoy RNA families. 
Table 1 and Table 2 show the details of the test groups 
used in this study and the information about each test 
group. 
3.4 Evaluation Design 

To assess the quality of the produced alignment, 
a reference alignment from database benchmark is 
required. Two different measures are used to compare 
the accuracy of the produced alignment with the 
reference alignment. These two measures are the 
quality (Q) and the total column (TC) scores (Edgar, 
2004). The Q score is the number of correctly aligned 
residue pairs in the test or predicted alignment divided 
by the number of residue pairs in the reference 
alignment. Other names of the Q score are also 
suggested such as developer score (Sauder et al., 
2000) and sum of pairs (SPS) (Thompson et al., 
1999). It should be noted, that this”sum of pairs” 
score is totally different from the SP score in objective 
function (Ahola et al., 2006). However, the TC is the 
number of the correctly aligned columns in the 
produced alignment divided by the number of 
columns in the reference alignment.  

In any given alignment which consists of M 
columns, the ith column is denoted by Ai1,Ai2,...,AiN 
where N is the number of sequences. For each pair of 
residues Aij and Aik, pi (j,k) is defined such that pi (j,k) 
= 1 if residues Aij and Aik from the test alignment are 
aligned with each other in the reference alignment, 
otherwise pi (j,k) = 0. The Score of ith column can be 
calculated as follows: 

 
Si= ∑ ∑ ��(�, �)

�
���,���

�
���   (4) 

 
Then, the Q score for a given alignment can be 

calculated as follows: 
 

Q = 
∑ ��
�
���

∑ ���
��
���

     (5) 

 
where Mr is the number of columns in the 

reference alignment and Sri is the score Si for the ith 
column in the reference alignment. On the other hand, 
the score Ci of the ith column is equal to 1 if all the 

residues in that column are aligned in the reference 
alignment, otherwise it is equal to 0. Therefore the TC 
score is calculated as follows: 

 

TC = ∑
��

�

�
���      (6) 

 
3.5 Harmony Search-based Methods for MSA 

To address the MSA in this study, the MSA 
problem is designed as an optimization model by 
using a meta-heuristic approach. Thus, several 
methods are proposed to deal with the MSA through 
adapting the harmony search (HS) algorithm (Geem et 
al., 2001). The first method is the basic HS adaptation 
which adapts the HS for MSA (BHS-MSA). The 
second method modifies the improvisation stage of 
the harmony search algorithm and is called the 
modified harmony search algorithm for MSA (MHS-
MSA). The third method hybridizes the harmony 
search algorithm with divide-and-conquer and blocks-
based approaches and is called the hybrid harmony 
search algorithm for MSA (HHS-MSA). 
3.5.1 Adapting the Harmony Search Algorithm  

A framework is developed to adapt the HS 
algorithm for addressing the MSA problem. The HS 
components are harmony memory, fitness function, 
improvising new harmony solution and termination 
condition (Yang, 2009). These components of the HS 
algorithm should be adapted to satisfy the 
requirements of the MSA process. Herein, the BHS-
MSA method is explained intensively. Basically, the 
Figure 1 describes the flowchart of the proposed BHS-
MSA method and the adaptation of the HS algorithm.  

 

Initialize HM
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Score Generated 
alignment

(OF)
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End

Accept New 
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Score Generated 
alignment
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Figure 1. The Proposed BHS-MSA Method 
 
Additionally, the BHS-MSA consists of the 

following steps:  
Step 1: Initializing the HSA and MSA 

Parameters 
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It is evident that the balance between exploration 
and exploitation (diversification and intensification) is 
an important factor controlling the success of HS 
algorithm over other algorithms (Yang, 2009). It is 
well known that the performance of many population 
based methods is highly dependent on their parameter 
values (Eiben et al., 1999). HAS and MSA parameter 
are initialized based on the tuning procedures. 

Step 2: Harmony Memory Initialization 

The harmony memory is a location vector which 
contains a set of solutions (individuals) determined by 
Harmony Memory Size (HMS) as shown in Figure 2. 
The harmony itself is a matrix with n x m of gap 
positions where n is the sequences number (rows 
numbers) and m is the maximum length of gap 
positions (column numbers). Each harmony 
(individual) in the HM encodes into a RNA feasible 
alignment.  

 

 
Harmony 

memory size 
Harmony memory 

Objective function 
values 

HM= 

��  

��  

��  

.. 

���� 
 

 

�(��) 

�(��) 

�(��) 

.. 

�(����) 
 

Figure 2: Harmony Memory Representation 
 
Step 3: Improvising the New Harmony Solution 
The simplest way to optimize the objective 

function score is to re-arrange gaps in the alignment 
(Wang and Lefkowitz, 2005). Improvising a new 
harmony is the essence of the HS algorithm and the 
cornerstone for building this algorithm. A new 
harmony (solution) is generated (improvised) from 

scratch �′  = ( ��
′ , ��

′ , … , ��
′ ) based on these 

mechanisms (memory consideration, random 
consideration and pitch adjustment).  

Memory Consideration: In the memory 
consideration, the values (gap position) of the new 
harmony vector (new alignment solution) are 
randomly assigned by a value inherited from the 
historical values stored in the HM with a probability 
of HMCR∈ [0,1] . Therefore, the value of decision 

variable ( ��
′ ) is chosen consecutively from 

(��
�, ��

�,… , ��
���).  

Random Consideration: The decision variables 
(gap positions) that are not assigned with values 
according to memory consideration mechanism are 
randomly assigned according to their possible range 
with a probability of (1-HMCR). This increases the 
diversity of the solution and drives the system further 
to explore various diverse solutions so that global 
optimality can be attained. Equation 7 summaries 
these two steps of memory consideration and random 
consideration as follow: 

 

��	
′ 	← �

	��
′ 	
	
��

′ 	
� 	∈ 	 (��

�, ��
�, … , ��

���)	�. �	����	

	∈ 	��	�. �	(1 − ����)	
  

     (7) 
 

Pitch Adjustment: It is an additional search for 
a good solution in the search space. It is achieved 
through tuning a chosen decision variable (gap 
positions) in the new harmony vector (new alignment 
solution) (��

′ , ��
′ , … , ��

′ ) inherited from the HM. Every 
decision variable of the new harmony vector is 
examined to decide whether it should or should not be 
pitch adjusted with the probability of PAR [0,1] as in 
Equations (8, 9). 

 
����ℎ	����������	 

��	
′ 	← �

	���		
��	

� ∈ 	 (��
�, ��

�,… , ��
���)	�. �	���	

	�. �	(1 − ���)
 Error! 

No text of specified style in document.   
    (8) 

The new decision variable x�	
′  is modified based 

on the following equation: 
 

��	
′ =	��	

′ 	± ��      (9) 
 
Here, bw is an arbitrary distance bandwidth used 

to determine the amount of movement or change that 
may occur to the components of the new variable (gap 
position). The way that the parameter PAR modifies 
the components of the new harmony is similar to the 
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musicians’ behavior when they slightly change their 
tone frequencies in order to get better harmonies. It 
explores more solutions in the search space and 
improves the searching abilities. The bandwidth {1,5} 
is applied to change the position of the gap.  

Step 4: Updating the Harmony Memory 
In order to update the HM with a newly 

generated vector (alignment solution) �′  = 

(��
′ , ��

′ , … , ��
′ ), the objective function is calculated for 

each new harmony vector �′ . The solutions in the 
HM are sorted in an ascending order based on their 
objective function values. If the objective function 
value of the new vector is better than the worst 
harmony vector, the worst harmony vector is replaced 
by the new vector. Otherwise, this new vector is 
ignored. 

Step 5: Checking the Stop Condition 
The improvisation and the HM update processes 

are terminated when the maximum number of 
iterations is reached. Finally, the best harmony vector 
in the HM is selected and considered to be the best 
solution to the problem under investigation. 
3.5.2 Modified Harmony Search Algorithm 

This method is called the modified harmony 
search algorithm for MSA (MHS-MSA). The 
modified is inspired from the nested genetic algorithm 
as in (De Pauw and Vanrolleghema, 2006) and 
dividing the pitch adjustment operator as in (Al-Betar 
et al., 2010). The performance and the alignment 
quality of the earlier BHS-MSA method might be 
affected due to: large search space and the feasible 
solutions are far away from the optimal. In this 
method, the harmony search algorithm is modified 
during the improvisation stage (Step3). The 
modification strategy is designed to improve the 
acceptance rule by modifying the memory 
consideration and the random consideration. The 
acceptance rule of memory consideration is modified 
by adding another level of memory selection to the 
improvisation stage based on two levels: the 
sequences level and the gap positions level. Memory 
consideration operator (HMCR) is divided into two 
procedures: (i) assigning a feasible value of sequence 
with probability of HMCR1, and (ii) assigning a 
feasible value of gap position with probability of 
HMCR2.  
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Figure 3. Flowchart of the Proposed MHS-MSA 
Method in the Improvise Stage. 
 

Consequently, the random consideration is 
modified in two levels based on changing in memory 
consideration. In the first level, a sequence is 
randomly assigned by a feasible value from HM with 
probability of 1-HMCR1. The selected sequence is 
profiling to the rest of the aligned sequences. Profile 
approach is used to align individual sequence to the 
group of sequences. The gap positions are added as 
the outcome of this profile procedure. In the second 
level, gap positions are randomly assigned by a 
feasible value from HM with probability of 1-
HMCR2. Moreover, these modification strategies are 
shown in the follows Figure 3. 
3.5.3 Hybridization of HS and DCA methods 

For highly NP-hard problems where the solution 
space is very huge and the possible solutions vary 
extensively. One way to deal with this huge solution 
search space is to divide and conquer, i.e. decompose 
the problem into sub-problems and treat each part 
separately and then combine these parts in the final 
stage (Hadwan et al., 2013). Therefore, the search 
space in multiple sequence alignment are narrowed 
down to a number of possible regions per sequence 
(Chen et al., 2005). This leads to simplify the search 
process by dividing the search space into small 
searching spaces instead of using the full search 
space. A hybrid method is proposed to reduce the 
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search space and improve the alignment quality by 
dividing the sequences into sub-regions. Based on the 
divide-and-conquer (DCA) approach (Stoye et al., 
1997; Bai and Rezael, 2005; Chen et al., 2005; Liu et 
al., 2007), conserved regions are identified to find the 
best cut-points in the sequences set. Then, the 
sequences are cut into portions to form many 
subsequence sets. Thereafter, the MHS-MSA method 
is used to align the sub-sequence within those regions.  

The HHS-MSA method is a combination of 
MHS-MSA, divide-and-conquer, and blocked-based 
methods. The aim of HHS-MSA is to identify the 
areas of local conservations before finding the global 
alignment. Conserved blocks can help to guide the 
identification of the homology and to assist the 
process of MSA. The ability to identify the conserved 
blocks has at least two advantages. It prevents the 
same blocks to be changed in the later process. 
Additionally, it speeds up the optimization process 
(Zhao and Jiang, 2001). The diagram of this method is 
illustrated in Figure 4.  

 

 
Figure 4: A hybrid Harmony Search for MSA (HHS-
MSA).B1-B3 Conserved Regions (Blocks) 

 

The steps for developing the HHS-MSA method 
are: (i) Building-Blocks (ii) Dividing the sequences at 
cut-points based on the blocks into conserved and 
non-conserved regions; (iii) Aligning the obtained 
non-conserved regions independently by using the 
MHS-MSA method; (iv) Construct the final alignment 
by combining the conserved and non-conserved 
regions. The processes of building-blocks consists of 
four steps: (a) finding all possible matched segments 
in each sequence pairs by using pairwise algorithm; 
(b) Using consistency concept to find all possible 
blocks that are acceptable; (c) Calculating the score 
value for each block by using the sum-of-pairs 
objective function; (d) Identifying and analysing the 
potentially useful block and selecting those are more 
consistent with each other; 

 
4. Results and Discussion 

This section contains experimental design, 
experimental results and comparative discussion. 
Results and comparisons have conducted to measure 
the behaviour of the proposed methods on addressing 
the MSA problem. 
4.1 Experimental Design 

The MSA and HS parameters are initialized 
based on the tuning procedure which provides the best 
setting values. Therefore, the parameters values are 
selected as: substitute matrix = RiboSum matrix 
(Klein and Eddy, 2003) and Gap open= -10, Gap 
extend= -0.5. Similar, The HS parameters are selected 
as: HMS=30, HMCR2 = 0.95, PAR=0.10 and 
HMCR1=0.55. Moreover, the fragment length in the 
building conserved blocks method is selected as 11. 
4.2 Experimental Results  

 
Table 3. Comparison results of the Alignment Quality between HHS-MSA with MHS-MSA and BHS-MSA 
Methods 

Test Group 
BHS-MSA MHS-MSA HHS-MSA 
Alignment Accuracy 
Q TC Q TC Q TC 

k5 0.407 0.201 0.592 0.385 0.694 0.499 
k7 0.336 0.110 0.555 0.274 0.687 0.428 
k10 0.308 0.088 0.542 0.221 0.676 0.368 
k15 0.254 0.046 0.498 0.157 0.665 0.365 
k20 0.104 0.007 0.406 0.059 0.639 0.205 
k40 0.076 0.006 0.342 0.024 0.697 0.159 
k60 0.064 0.006 0.293 0.015 0.727 0.082 
k80 0.053 0.001 0.298 0.008 0.754 0.075 
 
Table 3 summarizes the comparison results of 
alignment quality (Q and TC) among the HHS-MSA 
with previously proposed methods of BHS-MSA and 
MHS-MSA. Comparative analyses are performed and 
verified according to the references alignment 

provided with the dataset. It is clearly shown that the 
HHS-MSA has considerable improvement compared 
to previous methods of BHS-MSA and MHS-MSA. 
Therefore, the HHS-MSA aligns the sequences more 
effective and more accuracy due to many reasons. 

AACAUCUGAACAAGUGGCGCGCGGUACAACAUCUGAAAAACCCCUUUG 

 

AACAUCUGAACAAGUGGCGCGCGGUACAACAUCUGAAAACCCUUUGGG 

 

AACAUCUGAACAAGUGGCGCGCGGUACAACAUCUGAAACCUUAAAAA 

 

B1 B2 B1 

MHS-MSA Method 
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HHS-MSA is first finding the most promising blocks, 
thus leading to the most accurate results. Conserved 
blocks can be considered as a useful guide in 
identifying the homology and assisting in improving 
the quality of the MSA. The ability to determine the 
well-aligned blocks has three main advantages: (i) it 
explores all possible blocks which are correct and 
consistent, (ii) it prevents the same block to be 
changed in the later process and (iii) it speeds up the 
optimization process. Additionally, HHS-MSA 
decomposes the problem and search space into 
multiple search space, this lead to improve the 
alignment accuracy as well as speed up the 
computation of MSA. The divide-and-conquer 
techniques can effectively reduce the space 
complexity for multiple sequence alignment(Chen et 

al., 2005). Dealing with the divided part of the MSA 
separately is a good direction to parallelism strategy. 
4.3 Comparative Discussion 

This section provides the comparative discussion 
among proposed method HHS-MSA and other 15 
commonly used methods. As shown in Table 4, the 
alignment accuracy is expressed as quality (Q) and 
Total Column (TC) values. The result of quality (Q) 
outperforms MAFFT in the test groups greater than 20 
sequences, and outperforms the other remaining 
methods. The result of the proposed HHS-MSA 
method shows a good quality in test groups k40, k60, 
and k80 whereas the MAFFT shows the good quality 
in test group k5, k7, and k10. However, the results of 
total column (TC) for the proposed HHS-MSA 
method are comparable to the MAFFT and MUSCLE 
whereas it outperforms other remaining methods. 

 
Table 4. Comparison of the Alignment Quality (Q) Produced by the Proposed HHS-MSA and Commonly Used 
Methods 

  k5 k7 k10 k15 k20 k40 k60 k80 
  Q TC Q TC Q TC Q TC Q TC Q TC Q TC Q TC 
HHS-MSA 0.694 0.499 0.687 0.428 0.676 0.368 0.665 0.365 0.639 0.205 0.697 0.159 0.727 0.082 0.754 0.075 
ClustalW 0.545 0.326 0.501 0.228 0.506 0.185 0.491 0.157 0.413 0.068 0.417 0.071 0.423 0.044 0.447 0.039 
MAFFT 0.711 0.525 0.712 0.476 0.685 0.400 0.647 0.342 0.647 0.209 0.692 0.167 0.715 0.126 0.730 0.133 
MUSCLE 0.682 0.490 0.672 0.418 0.660 0.361 0.611 0.342 0.606 0.214 0.678 0.208 0.694 0.101 0.716 0.106 
ProbCons 0.422 0.217 0.414 0.162 0.395 0.127 0.355 0.088 0.381 0.065 0.410 0.050 0.447 0.027 0.453 0.019 
T-Coffee 0.592 0.384 0.566 0.292 0.555 0.253 0.535 0.236 0.514 0.134 0.551 0.097 0.569 0.070 0.564 0.066 
DIALIGN 0.619 0.419 0.586 0.316 0.571 0.250 0.569 0.218 0.566 0.164 0.567 0.097 0.580 0.075 0.578 0.065 
DIALIGN -TX 0.583 0.365 0.563 0.287 0.555 0.237 0.555 0.214 0.502 0.110 0.496 0.070 0.488 0.055 0.508 0.057 
SAGA 0.656 0.457 0.685 0.417 0.664 0.360 0.648 0.318 0.587 0.186 0.653 0.136 0.713 0.090 0.730 0.112 
Kalign 0.691 0.496 0.665 0.418 0.646 0.360 0.627 0.333 0.591 0.160 0.582 0.097 0.607 0.062 0.650 0.041 
PicXAA -pf 0.669 0.461 0.661 0.377 0.657 0.331 0.681 0.335 0.643 0.175 0.680 0.138 0.691 0.098 0.691 0.077 
MSAProbs 0.414 0.207 0.407 0.155 0.393 0.126 0.366 0.101 0.393 0.073 0.428 0.058 0.467 0.036 0.468 0.022 
PCMA 0.533 0.315 0.480 0.209 0.498 0.198 0.503 0.172 0.435 0.073 0.453 0.070 0.438 0.043 0.472 0.044 
Align-m 0.614 0.429 0.605 0.343 0.613 0.317 0.595 0.286 0.585 0.197 0.624 0.165 0.672 0.136 0.658 0.103 
PRIME 0.574 0.384 0.556 0.322 0.544 0.287 0.528 0.246 0.545 0.173 0.606 0.147 0.657 0.122 0.671 0.103 
ProAlign 0.631 0.418 0.596 0.327 0.582 0.283 0.563 0.239 0.491 0.120 0.510 0.083 0.490 0.046 0.516 0.026 

 
The best case of HHS-MSA performance, 

compared to ProbCons shows improvement with 69% 
in alignment accuracy (Q) and 190% in alignment 
accuracy (TC) (Table 5), whereas the performance is 
slightly similar compared to the alignment method in 
MAFFT. This finding can be generalized to other 
alignment methods within this performance ranges.  

The results obtained by some group test have 
less than 20 sequences are slightly less accurate. This 
might be due to the objective function. To obtain 
results that are still near to biologically correct 
alignment, it seems that more sophisticated objective 
functions incorporating further biological criteria have 
to be considered. Additionally, the cut points are fixed 
and chosen based on the found blocks and this might 
not be a suitable point for some alignment test groups. 
The choice of the cut positions is critical for the 
success of the divide-and-conquer (DCA) procedure 

and inadequate cut positions in a division step can 
deteriorate the whole alignment. 

Additionally, the search space of the MSA is 
simplified and divided to k blocks. The search space 
of the MSA can be calculated by accumulating all 
different permutation ways for each alignment and 
subtracting the search space of the blocks. In this 
context, the search space of aligning n sequences of 
maximum length L, and k blocks are shown in the 
following formula:  

∑
�!

��!

�
��� 	− 	� × ∑

�	!

(�����	)!

�
���    (11) 

The overall search space is reduced by k ×

∑
�	!

(�����	)!

�
���  where k is the number of blocks and ���	 

is the length of row i in the block k. This restricts the 
search space, leading to improve alignment quality. 
Furthermore, the results from the comparison analysis 
indicate that alignment accuracy (Q and TC) is 
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significantly difference among all commonly used 
methods (P<0.001, x2=3123.971, df=15) and 

(P<0.001, x2=2334.531, df=15) respectively. 

 
Table 5. A Summary of the Comparison between HHS-MSA and Other Common Used Methods 

 
Alignment Accuracy Improvement Percentage 

Method Q TC Q TC 
HHS-MSA 0.692 0.273 - - 
ClustalW 0.468 0.140 48 95 
MAFFT  0.692 0.297 0 -8 
Muscle  0.665 0.280 4 -3 
ProbCons 0.410 0.094 69 190 
Tcoffee  0.556 0.191 24 43 
Dialign  0.579 0.200 20 37 
Dialign-tx 0.531 0.174 30 57 
SAGA  0.667 0.259 4 5 
Kalign  0.632 0.246 9 11 
Picxaa-pf 0.672 0.249 3 10 
MSAProbs 0.417 0.097 66 181 
PCMA 0.476 0.141 45 94 
Align-m 0.621 0.247 11 11 
PRIME 0.585 0.223 18 22 
ProAlign 0.547 0.193 27 41 
 
5. Conclusions and Future Work 

The overall goal of this paper is to provide an 
alternative approach to address the multiple sequence 
alignment (MSA) problem. Those methods (BHS-
MSA, MHS-MSA, HHS-MSA and BHS-LMSA) are 
inspired from the harmony search (HS) algorithm. It is 
the first attempt which has not applied previously 
according to the available literature. The HHS-MSA 
method is proposed as a strategy to improve the 
alignment quality and to overcome the shortcoming of 
searching space problem by breaking the MSA into 
sub-regions based on the conserved blocks. Using the 
harmony search algorithm, align these sub-alignments 
separately and combine them to construct the final 
alignment. Interestingly, the final produced alignment 
of HHS-MSA shows better quality solutions 
compared to (BHS-MSA and MHS-MSA) methods. 
HHS-MSA has high efficient search space. It is also 
good for parallelization where it can implement each 
sub-region in separate node or processor using parallel 
architecture. In comparison with other common used 
methods, the HHS-MSA method is able to achieve a 
good ranking to the most common used methods and 
has remarkable competition in terms of quality (Q) 
especially when the alignment contains more than 20 
sequences. On the other hand, it also achieves a high 
rank to the most common used methods in terms of 
total column (TC) and on the edge with the best 
alignment method (MAFFT and MUSCLE). 

HHS-MSA brightens alignment quality versus 
iteration number. The larger iteration number; is the 
better alignment score. This might be due to the larger 
optimal alignments to be computed. This motivates to 

investigate effectiveness of adapting the harmony 
search algorithm on the local MSA.  
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