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Abstract. We consider approximated solution of elasticoplastic problem close to a cavity in laminated (layered) 
massif with the assumptions that in elastic zone the massif is anisotropic and obeys the generalized Hooke's law, and 
the inelastic zone is modeled as an isotropic medium. The problem is approximately solved using the P.I.Perlin's 
method involving an iterative scheme. A system of algebraic equations has been created for finding unknown 
coefficients of complex potential. For the same elastic parameters of anisotropy, comparison is shown of dimensions 
of the inelastic deformation zone for various conditions of plasticity near a mining opening of the same depth.  
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Introduction 

Influence of internal pressure at opening 
contour on the size and configuration of plastic zones 
close to mine opening is numerically shown. An 
algorithm has been made for digital implementation 
of the indicated problem using a PC, and results are 
shown as graphs. 

Design and construction of underground 
facilities requires a justified approach to assessing 
the impact of static and seismic loads on various 
types of structural elements of buildings, their 
definition of stress and stressed state basing on 
improving elasticoplastic models. 

The method of elasticoplastic problem 
algebraization was used by R. Nottrot [1] and R. 
Timman [2] for obtaining a numerical solution to 
some specific problems. 

In case of sufficiently high level of static and 
dynamic loads, rock massif around mine openings 
may come to its limit state and the values of static 
and seismic stresses may exceed the ultimate strength 
of rock massif, leading to formation of inelastic 
deformation areas. 

The elasticoplastic problem of straining a 
band with semicircular cuts was solved by 
R. Southwell and R. Allen using the relaxation 
method [3] 

The problem was solved by using the 
P.N.Perlin's semi-inverse method [4, 5] and the 
algorithm shown in works [6-8].  
Distribution of elastic stresses components in 
layered medium close to the cavity 

In accordance with initial presupposition, 
rock massif in an elastic zone obeys the generalized 
Hooke's law for a transtropic body with horizontal 

isotropy plane, which for tunnels in plane 
deformation conditions are written in as [9]:  
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Here "y" above indicates components of 
stresses: Deformations in elastic zone. Coefficients of 
deformation bij, (i, j=1.2, 6), are equal to:  
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where E1, E2 are Young modulus for 
compression straining in the direction of isotropy 
plane and normal to it; v1 is Poisson's ratio 
characterizing lateral contraction in the plane of 

isotropy in case of straining in this plane: 2v
 same as 

in case of straining in the direction perpendicular to 
the isotropy plane; G2 is the shear modulus for the 
plane perpendicular to the isotropy plane.  

Now let us the problem of an anisotropic 
body elasticity theory for an infinite plane with an 
elliptic opening, on the circuit of which normal and 
tangential stresses are applied symmetric to the 
coordinate axes, and infinities are exposed to strains:  

      0,,  
xyyx qp   (3) 

  Stresses in the elastic zone, as it is known 
[10], are presented in two sophisticated analytic 

functions  kk z of a complex argument 
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yxz kk  , (к=1.2):  
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Here k  is found as a root of the 
characteristic equation of the fourth degree. [9]  
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For many anisotropic bodies k  are purely 

imaginary values, i.e. k .ki  

Values k  that define the degree of 
anisotropy of a body are called elastic parameters of 

anisotropy; for an isotropic body k = 1, (k=1.2). 
These parameters are determined by five elastic 
constants Ek, VK, G2. (k=1.2), by the following 
formulas:
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 Values kn,  characterize the measure of the 
anisotropy of the body in case of plane deformation 
and show deviation from the isotropic body, for 
which n = 1, k= 2.  

Let us show strain functions 

),2,1(),( kzkk as [10].  
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Functions of the main strains in the 

untouched massif ),()0(
kk z  i.e, Ako constants are 

associated with the strains at the infinity and elastic 

parameters k  (k = 1.2) depending on: 
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To find additional strain functions 

 ,)00(
kk z  (k = 1.2) related to mining, let us display 

appearance of an elliptic contour with axes OA = a, 

OB = b onto the appearance of a unit circle, using a 

rational function    in form of  
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By denoting the infinite plane with an 
elliptical opening by S, we can argue that the 

functions  kk z  are defined in Sk areas obtained 
from S by affine transformation. 

The following expressions are used as 
boundary conditions for defining functions 
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In the last relations nX  and nY , projections 
of external forces on contour of elliptical opening to 
the corresponding coordinate axes.  

Knowing that on the contour of the opening  
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and expanding the right-hand sides of 
boundary conditions (11) into a Fourier series, let us 
reduce them to:  
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Due to symmetry of the problem (with 
respect to the coordinate axes), summation in the 
right parts of (12) is performed using odd powers 

only.   
Using known properties of the integral of 

Cauchy type and going to old variables Zk, from 
boundary conditions (12) one can find functions 

 kk z)00(
 
in the following form:  
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Where coefficients Akn, (k= 1.2,... ), 
unknown actual values.  

Thus, full functions  kk z of strains are 
written as  
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Derivatives of these functions  kk z  are 
equal to:  
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Finally strain components in an elastic zone 
through functions (15) are defined by expressions:  
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Distribution of strains in zone of plasticity in case of 
Hoek-Brown instability 

Due to statistical determinability of the 
problem, strain components in the plastic zone exist 
without including elasticoplastic boundary, and 
depend only on the boundary conditions at the 
contour of the cavity. Let's proceed to defining them.  

Around a circular mine opening, it is 
convenient to show strain components in polar 
coordinates. Let’s indicate them by the "n" index 
above, indicating that they belong to the plastic zone. 

Stress components 
p

r
pp

r   ,,  in the plastic zone 
satisfy differential equations of equilibrium.  
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for boundary conditions on the contour of the cavity 

(at 1r )  

 .0,0  p
r

p
r constp    (18) 

and Hoek-Brown plasticity condition [11] 

  ,02  cс
p
r
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r sm   (19) 

where ,0c  is resistance to simple 
compression of intact rock, the values are taken from 
the experiment; s is the parameter (value) defining 
the level of crackling (1 stands for absence of damage 
and 0 (zero) for completely broken material).  

The following assumptions are valid: 
a) the area of inelastic deformation 

completely covers unattached contour of mine 
opening radius R;  

b) the isotropic incompressible material in 
the area of inelastic deformation obeys criterion of 
Hoek-Brown instability without mitigation; 

c) the elastic area is under plain strain and its 
behavior is described by generalized Hooke's law for 
homogeneous transtropic massif with inclined 
isotropy plane. 

Next, let's define expression of various fields 
within the plastic area that are completely covered by 
the mining opening contour with circular cross 
section. Do to so, let's use the fact that the plasticity 
criterion is achieved throughout the limit area, which 

allows to record   as r  and solve the equilibrium 

equation. The resulting differential equation:  
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with boundary conditions r=R, i
p
r P  

where P i  is internal pressure, m is the parameter 
associated with rock massif properties (usually 5 to 
30), where the letter p above have components of 
plastic strains.  

Converting differential root of a complex 
functions: 
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Thus, components of plastic strains in the 
areas of a polar coordinate system are the following: 
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In the original variant, let's that internal 

pressure is zero (P=0). i   
Due to static determinability of the problem 

in a plastic area, strains components in rectangular 
coordinates are found independently of strains at the 
"infinity" by formulas: 
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In the second case, when pressure 

)1,0(  sii acts from the internal contour of 
the mine opening, strain components in the plastic 
zone are defined as follows:  
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 Algorithm for numerical solution of an 

elasticoplastic problem near a cavity 
 Now let us directly find unknown 

coefficients 0kA  and knA  (k = l.2; n = 1.2,...) of 
elastic strain functions (14) and clarify prerequisites 
of elasticoplastic boundary defined initially in the 
form of an ellipse.

 
 

The strain at the desired boundary is to be 
continuous:  
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In these conditions, elastic strains are 
represented by expressions (16) and plastic strains - 
by equations (23) or (24) for the Hoek-Brown 
plasticity condition.  

In the first quarter of the displayed plane   

let us put m  intermediate directions (beams) at 

angles ...),3,2,1(, jj  to axis 0  (Fig. 2). 
The area in question is limited to directions 

,2/,0 )1(,0,    m that correspond to fixed 
points A and B in the plane Z. Let's denote radial 
coordinates (the distance from the pole in a polar 

system) of points on selected beams as j
  

According to semi-inverse method [4, 5] 
positions of any two points in the elasticoplastic 
boundaries are provided. Let these be the point of 
intersection between axes with an ellipse, i.e., OA = 
a, OB = b (see Fig. 1). An ellipse with specified 
semi-axes we will set as the elasticoplastic boundary 
at zero approximation. Let's assume that the required 
elasticoplastic boundary passes these points, and 
according to the condition that points A and B are 

fixed in plane z 0,1)1(,0,  m  . In other 

words, agitated are radial coordinates j  close to 

position 0,1j  that correspond to the points of 
the ellipse in plane z, except for the two extreme 

points with coordinates  0,1,0 0,0,     and 
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  .0,1,2/ 1)1(,   mm   . 

  
Figure 1. Design scheme defining elasticoplastic 
boundary around the cavity in an anisotropic 
body: a) plastic zone around the cavity; b) area 
with a unity circle.  
 

Let's limit the upper limit of infinite sums in 
(14) by some number N and write the conditions (25) 

for each of the selected  2m  points. Then, to 

determine 2(N+1) unknown coefficients 0kA , knA , 
(K = 1,2; n = 1,2,..., N) and m unknown 

 mjj ...,,2,1  we get a system  43 m  of 
heterogeneous algebraic equations. 

Let us note that due to the fact that in case of 

00,   and   0,2/1 
П
xym   and 

0y
xy , two equations fall from conditions (4.25) 

as identities). The resulting system of equations is 

linear in relation of coefficients 0kA ,
 

knA  and is 

highly nonlinear in relation to j . 
From the condition of equality of number in 

equations (3m+4) and the number of unknown 
2(N+1)+m we can find the upper limit of the sum in 
(4.14), i.e., N=m+1. Thus, the order of the system of 
equations depends on the number of selected 
intermediate points on elasticoplastic boundary.  

Let us reduce equation (4) to the form 
suitable for later use:  
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e
xyZiZiZiZi  

Let's insert expression (15) into the first two 
equations (26) instead of the derivatives of strain 
functions. Then, taking into account the first two 
conditions (25) for each of (m+2) directions, we 
obtain a system of algebraic equations of order 
2(m+2) to determine 2(m+2) coefficients 
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Here 

);1...,,2,1;2,1(,  mjKyixZ ikjkj   
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(28) 
Note that taking into account the previously 

set value N=m+1, we have the number of unknown 2 
(m+2)=2(N+1). 

Proceeding similarly, from the third equation 
(26) taking into account the last equation (25), we 
obtain a system of m equations:  
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 (29) 
These m equations play the role of reference 

ones for assessing accuracy of the strain continuity 
conditions when passing through an elasticoplastic 
boundary for a given set of m values 

 .,...,2,1, mjj   Note that the plastic strains 
satisfy condition (19).  

In the case where the isotropy plane of a 
transtropic body is at a certain angle to the horizon, 

i.e. in case of 0 , the result of the system of 

equations for finding unknown coefficients 0kА  and 

knА ,according to conditions (25) has the form:
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where 

        ,12
1

222212

,,




 baznz kk

n

nkjjkn kj
   

 .2...,,2.1;...,,2.1;2.1  mjNnk
Right sides of equations (27) and (30) as 
statically determinable problems are 
represented by expressions (23) or (24).  

To solve nonlinear systems (27) and (30), 
Gauss method is used. As shown, the method fits 
together if the initial (zero) approximation is taken 
close enough to the desired solution.  

Let some initial approximation be known 

for points on beams ,j , i.e., be specified. 
   .1...2,1,00  mjjj    Inserting these 

values into 
 0

j  using relations (28) and expression 

(23) or (24), depending on the plasticity condition in 
question, let us define components of plastic strains 
at selected points. Then, describing conditions (25) 

for 
 0

j
 in all  2m directions with 

 ,2,...,2,1,0  mjconstj , we obtain a 
system of equations in relation to coefficients Akn 

(k=1, 2; n=0, 1, 2, m+1). Assume that 
)0(

0kA  will be 

the solution of this system. 

Inserting found coefficients 
)0(

ПkA into (29) 

or into the third equation of system (30) we obtain a 
"discrepancy" between the right and left sides; let us 
denote them as 

 .,...2,1)0( mjp
yx

e
yxj jj

  .Consequently

, the problem lies in selecting such values 
  ,k

j where values 
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j or some combination of 
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k   would 

be less than previously defined values 1  or 2 , 

i.e., 
)(k

j  < 1 , or 2
)(  k

; 1  or 2  are small 

values that characterize accuracy of the solution.
 
 

Depending on the sign 
)0(

j for each 

direction j  values ,)0()1(    jj  change 

( 
is taken with the plus sign, if ,0)0(  j , 

and the minus sign if ,0)0(  j , and again we 

determine the coefficients 
)1(
ПkA  beforehand by 

calculating right sides of the system (4.30) by 

formulas (4.23) or (4.24). Then discrepancies 
)1(

j  

(or 
)1( ) are calculated. If 

)1(
j 1  (or 

 
2

1  ), the calculation ends where 

01,0;05,0 21   . 

  But if 
)1(

j 1  (or 
 

2
1   ), then the 

iterative process of calculation is repeated while 

changing the values .)2(
j  

 The calculation ends either when the 
required accuracy is reached, or when subsequent 

iterations do not lead to a reduction in values 
)(k

j  

(or 
)(k ).  

 Numerical calculations 
The calculations have been made in 

dimensionless variables  
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 (31)  
After reaching a predetermined accuracy 

strain at the infinity are determined from relations 
(16) with expressions:  
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(33) 

where j are the radii of the unit circle, 

j  is direction of beams.
 
 

Calculations show that quality pictures of 
configuration of elasticoplastic boundaries in both 
terms of instability coincide. However, for almost 
same areas of plasticity, laying depths (H) of mine 
openings are different. As an example, for yield 
conditions of Coulomb-Mohr from solutions of the 

system (30) with coefficients 7174,210 А  and 

4680,920 А , the strains at infinity are: 

620,9/ 0  kpPk  and 

.50,13/ 0  kqQk  If we assume that 

2
5,2

м

Т
  (average density of rock massif) and 
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,200
20

m

Тc
k с   then from the equation 

50,13/ 0  kqН k  we can determine the 
laying depth of the mine opening, for conditions of 

Coulomb-Mohr, i.e., .1080мH k  .Similarly, 
from the solution to the system (30) with 

coefficients 2134,210 А  and ,0285,820 А  
strains at infinity 

.63,11/,43,7/  cxcx qQpP 
For comparison of laying depth in the conditions of 
Coulomb-Mohr yield and Hoek-Brown let us 

assume that ,соnst then 

,63,11/  cx qН   consequently the laying 
depth of the mine opening, for conditions of Hoek-

Brown .4,930 mH x   The difference between the 

depths of )( xk HН   is .6.149 mH   
If you seek to keep all other conditions 

equal, for both conditions of plasticity, i.e., keep the 
laying depth of the cavity at 1080 m, then for these 
yield conditions, dimensions of inelastic deformation 
area will be different. 

 This phenomenon is observed by means of 

an iterative process with adjustments а  and 

в  with achieving accuracy 
xk PP , and 


xk QQ  and   ( .01,0 ). 

As can be seen from Figure 2 (Curve - 2), 
zone of plasticity under Hoek-Brown conditions with 

other equal (  mHk 1080 constant) conditions, 
compared to the plasticity area in relation of 
Coulomb-Mohr yield, tends to increase.  

 

  
Fig.2. Comparison of inelastic deformation area 
size for various plasticity conditions 
 

 .8,0;0,2;30 21
0    

 mHk 1080 constant. 
 Curve 1 corresponds to the Coulomb-Mohr 

condition; 
 curve 2 corresponds to the Hoek-Brown 

condition. 
Now let us consider the case where in 

expression (24) the value of internal pressure is not 
zero i.e., Pi ≠ 0 (Pi = P0). All other conditions being 

equal ( H constant). The iterative process is 

accompanied with adjustments a and b .  
Figure 3 shows configuration of the inelastic 

deformation area depending on various values of 
internal pressure. 

 

 
Figure 3. Configurations of the inelastic 
deformation area for isotropy plane  
 

045 depending on various values of 
internal pressure. The parameters of elastic 

anisotropies 8,0,0,2 21    and strains at the 
infinity  
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