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Abstract: Digital filtering occupies an extremely important position in the digital signal processing.This paper
introduces the new concept of using Matlab with Graphical User Interface in designing FIR(Finite Impulse
Response) digital filters and IIR(Infinite Impulse Response) digital filters. Matlab, which is a high-performance
numerical calculation program and provides a powerful function of graphical display. Matlab is widely used in
engineering calculation, numerical analysis,etc. This paper introduces the definition and basic principles of FIR &
IIR digital filters. In this paper we have designed Graphical User Interface consists of almost all types of IIR filters
and FIR filters. User simply have to insert filter specifications on GUI and get magnitude response, phase response,
etc of required the filter.
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1. Introduction FIR filters are one of two primary types of
A fundamental aspect of signal processing is digital filters used in Digital Signal Processing (DSP)

filtering. Filtering involves the manipulation of the applications, the impulse response is "finite" because

spectrum of a signal by passing or blocking certain there is no feedback in the filter as in the second type

part of the spectrum, depending on the frequency of of filters (It will explained in the IIR filters part).A

those parts. Filters are designed according to what useful designing model for the design specifications

kind of manipulation of the signal is required for a in FIR design is to think of each specification as one

particular application. Digital filters are implemented of the angles in a triangle as shown fig.1.

using three fundamental building blocks: an adder, a

multiplier, and a delay element and they represent the order

Capacitor, Inductors and Resistance in the analog

filtering.

With these basic building blocks, the two
different filter structures can easily be implemented.
These two structures are Infinite Impulse Response
(IIR) and Finite Impulse Response (FIR), depending T.width
on the form of the system’s response to a unit pulse Fig.1 FIR triangle model
input. IIR filters are commonly implemented using a
feedback (recursive) structure, while FIR filters
usually require no feedback (non-recursive). The
design process of a digital filter is long and some way
is a kind of routine if done by hand. With the aid of
computer programs performing filter design
algorithms, designing and optimizing filters can be
done relatively quickly.

A filter with linear phase response is desirable
in many applications such as image processing and
data transmission. One of the desirable characteristics
of FIR filters is that they can be designed very easily
to have linear phase.[1]

Ripple

The model in Fig 2.2 is used to understand the
degrees of freedom available when considering a
filter specification. Because the sum of the angles is
fixed, we can at most select the values of two of the
specifications. The third specification will be
determined by the design algorithm utilized.
Moreover, as with the angles in a triangle, if we make
one of the specifications larger/smaller, it will impact
one or both of the other specifications.

B. Optimal fir designs with fixed transition width
and filter order

Truncated-and-windowed impulse response de-
sign algorithm is very simple and reliable; it is not

2. Designing of fir digital filters optimal in any sense. The designs are generally

A. Designing an fir (finite impulse response) filters

336



Life Science Journal 2014;11(5)

http://www.lifesciencesite.com

inferior to one of the order or the transition width or
the passband/stopband ripples, the exceeded value of
any of them is typically undesirable in the Optimal
designs are computed by minimizing some measure
of the deviation between the filter to be designed and
the ideal filter. The most common optimal FIR design
algorithms are based on fixing the transition width
and the order of the filter. The deviation from the
ideal response is measured only by the
passband/stopband ripples. This deviation or error
can be expressed mathematically as

E(@)=H,(@)~H,,€") 0eQ

(2.1)
is the zero-phase response of
o=[0,0,]o,,,1]

stop

Where H” (a))

the designed filter and Ctis
still necessary to define a measure to determine “the

size” of E(w) (the quantity we want to minimize as
a result of the optimization)

The most often used measures are the L-norm
(Lo or L2) .In order to allow for different peak
ripples in the passband and stopband, a weighting
function W (w) is usually introduced

El@Haiot,en] o

The most famous two filter kinds in this field
are the Equiripple and the Least Square Filter and
they will described later

Order

T.width Ripple

Fig.2 FIR triangle model for fixed transition width
and filter order

C. Optimal fir designs with fixed transition width
and peak passband/ stopband ripple

Fixed Transition width and passband/stopband
ripple allow us to reach an optimum filter with a
minimum number of tabs (order). The equations are
even more dramatic when the passband ripple and
stopband ripple specifications are different (unlike
the equiripple filters) . The reason is that the
truncated-and windowed impulse response methods
always give a result with approximately the same
passband and stopband peak ripple. Therefore,
always the stricter peak ripple will cause in
exceeding (possibly significantly) all other ripple
constraints at the expense of unnecessarily large filter
order. To illustrate this, we turn to a different
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equiripple design in which both the peak ripples and
the transition width are fixed. In minimum-phase
designs with fixed ftransition width and peak
passband/stopband ripple the same procedure can be
used to design minimum-phase filters with fixed
transition width and peak passband/ stopband ripple.
In this case, rather than obtaining smaller ripples, the
benefit is meeting the same transition width and peak
passband/ stopband ripples with a reduced filter order.

Order

)

T.width

Ripple

Fig3. FIR triangle model for fixed transition width
and peak passband/stopband ripple

D. Optimal fir designs with fixed peak ripple and
filter order

Fixing the filter order and the peak ripple values
should result in a smaller transition width. In
minimum-phase designs with fixed peak ripple and
filter order, once again, if linear-phase is not a
requirement, a minimum-phase filter can be designed
that is better in some sense to a comparable linear
phase filter. In this case, for the same filter order and
peak ripple value, a minimum-phase design results in
a smaller transition width than a linear-phase design.

Order

/
/

T.width Ripple

Fig.4 FIR triangle model for fixed peak ripple and
filter order

E. Designing optimal fir equiripple filters with
fixed transition width and filter order by using
graphical user interface

e This linear phase filter can be designed with
the function firpm or in minimax concept by firgr.

B=firpm (N, fvector, mvector) or

B=firpm (N, fvector, mvector, wvector) or

B=firgr (N, fvector, mvector) or

B=firgr (N, fvector, mvector, wvector)

e And for Hilbert Transform that have odd

symmetry
B=firpm (N, fvector, mvector, 'Hilbert') or
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B=firpm (N, fvector,
'Hilbert") or

B=firgr (N, fvector, mvector, 'Hilbert') or

B=firgr (N, fvector, mvector, wvector, 'Hilbert')

e And for the Differentiator with odd
symmetry

B=firpm (N, fvector, mvector, 'differentiator') or

B=firpm (N, fvector, mvector, wvector,
'differentiator') or

B=firgr (N, fvector, mvector, 'differentiator’) or

mvector, wvector,

Select a filter tybe and fill all its specifications

B=firgr (N, fvector,
'differentiator’)

Where

N is the filter Order (returns a length N+1 tabs)

fvector is the best approximation to the
desired frequency response

mvector, wvector,

mvector is the filter magnitude vector in the
least -Pth sense.
wvector is the weight error vector [3]

Filter Kind
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Fig.S Using Graphical User Interface for designing Hilbert bandpass filter (Fpass=0.1, Fstop=0.9, Order=30).
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Fig.6 Showing Magnitude Response of Hilbert bandpass filter (Fpass=0.1, Fstop=0.9 & Order=30).
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Phase Response
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Fig.7 Phase response of a bandpass filter

F. Fir least-squares and fir constrained least-squares
filters

Equiripple designs may not be desirable if we want
to minimize the energy of the error (between ideal and
actual filter) in the passband /stopband. Consequently, if
we want to reduce the energy of a signal as much as
possible in a certain frequency band, least-squares
designs are preferable.
G. Designing Optimal Fir Least Square Filters With
Fixed Transition Width And Filter Order

This filter can be designed with the function firls
as follows

B=firls (N, fvector, mvector) or

B=firls (N, fvector, mvector, bwvector)

And for Hilbert Transform that have odd

symmetry

Select a filter tybe and fll all its specifications

B= firls (N, fvector, mvector, 'Hilbert') or

B= firls (N, fvector, mvector, bwvector, 'Hilbert")

And for the Differentiator with odd symmetry

B= firls (N, fvector, mvector, 'differentiator’) or

B= firls (N, fvector, mvector, bwvector,
'differentiator")

Where

N is the filter Order (returns a length N+1 tabs)

fvector is the best approximation to the
desired frequency response

mvector is the filter magnitude vector in the
least -Pth sense.

bwvector s the weight per band vector [3].
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Fig.8 Designing A lowpass Least Square filter with order=20 and band edges at f1=04 gapq /> =05 (normalized)

by using GUIL.
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Magnitude Response (squared)

_________________________________________________

Magnitude squared

1 1 1 1
Ji} o1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9
Normalized Freguency (== rad/sample}

Fig.9 A lowpass Least Square filter with order=20 and band edges at f1=04 and f2=05 (normalized),
compared with an Equiripple filter with the same specifications

An equiripple filter designed with firpm exhibits May be it is quite important to describe at least
equiripple behavior. And a least square filter one of the window kind and we will take the Kaiser
designed with firls filter has a better response over window as an example. The main problem with the
most of the passband and stopband, but at the band window design method is that it is very difficult to
edges (f = 0.4 and f = 0.5), the response is further trade-off between attenuation and transition
away from the ideal than the firpm filter. This shows bandwidth. Kaiser developed a window function and
that the firpm filter's maximum error over the a design formula that will usually result in a filter
passband and stopband is smaller and, in fact, it is the length less than those designed by using other
smallest possible for this band edge configuration and window methods.Given a lowpass filter, the passband
filter length. )

H. Fir windowing region is from O to # and the stopband region from

I. Kai i ign techni o .
aiser window design technique @y to 77 as described in the following fig

[H(e™)|
1+5,
1
F58y
32| | — _
7 @, o S
Fig.10 the windowing lowpass filter components
Aw=w, —o A-8
co 6o N ssaw
= : (3.9)
4 =-20log, 0 37)
7 0.1102(4-87) A>0
A=) g
K(n)= Jor  0<n<N L=0.582(4-21)" +0.078(A4 -21) 21<4<90
1D (3.8) 0 A<21
Where N controls the transition bandwidth and f
controls the sidelobe attenuation. (3.10)
The resultant formula by Kaiser: These formulas can be used to estimate the values of

N and B. To design a filter of minimal filter length while
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satisfying a given set of specification may

require a few

Magnitude Response

iterations to fine-tune the values of N.

Magnitude
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J. Matlab and fir raised cosine

The function firrcos can be used to design a raised
cosine FIR filter and a square root FIR raised cosine in

MATLAB
B=firrcos (N,fc,TW,Fs) or
B=firrcos (N,fc,TW,Fs,'sqrt')
With a rolloff factor:
B=firrcos (N,fc,Fs,'rolloff') or
B=firrcos (N,fc,Fs,'rolloff','sqrt")
With a delay
B=firrcos (N,fc,TW,Fs,'normal’,delay)
B=firrcos (N,fc,TW,Fs,'sqrt',delay)

Select a filter tybe and fll all its specifications
I

) Equripple 1) Linear Phase J

(1) Fixed Order - | | B
O LesstSquare 1) Least Souare -1
O Winclowe 1) Fixed Order - | 1) Bartnan win - |
(=) Raised Cosine | 1) Raised cosine transition kand ;J
) Mullivate Fiters WJ

1) Fixed order (only) d
() Lesst Pth-norm
Adcitional
de Loop Atte [¥] Roll-aff Factor | 0.3

[ Delay ,— 1 Banc ,—

) Butterworth | Fixed Order -1

() Maximally Flat

) Chebyshew | Tyhe < | Foed order -1
) Entic Fixed Order -]

() Least Pth-norm

Max Pale Ra

) Constrained Least Pth-norm

Fig.12 A Raised Cosine filter (order 20) with a cutoff frequency off 0.5 (norma

R=0.5, R=0.7, and R=0.9 by using GUIL.

07
MNormalized Frequency (== rad/zample)
Fig.11 Kaiser window for different orders (order 1 to 6) .The transition bandwidth decreases with the increasing of the
order.

0.3 0.4 0.5 0.6

With a rolloff factor and delay

Where:
N

B=firrcos (N,fc,Fs,'rolloff,'normal',delay) or
B=firrcos (N,fc,Fs,'rolloff,'sqrt',delay)

is the filter Order (returns a length N+1 tabs)

fc is the passband edge frequency

™
Fs is
Frequency)

the

transition bandwidth (Fstop — Fpass)
sampling frequency (= 2 Nyquist

delay is a variable integer delay[3]

Filter Kind
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lized) and a roll-off factor R=0.1, R=0.3,
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Fig.13 Magnitude Response

Different roll-off factors (R=0.1, R=0.3, R=0.5,
R=0.7, R=0.9) with the same order (order=20) and
cutoff frequency (fc = 0.5).The figure shows the
squared magnitude and the different unity gain
regions and the attenuation regions and the raised
cosine regions and it easily to figure out the relation
between them and the rolloff factor

3- Infinite Impulse Response(IIR) Digital Filter
A. Designing an IIR (Infinite Impulse Response)
filters

IR (Infinite Impulse Response) or Recursive
filters are signal processing filters which re-use one
or more output(s) of the filter as inputs. This
feedback results in an unending impulse response
characterized by exponentially growing, decaying, or
sinusoidal signal output components.

In digital IIR filters, the output feedback is
immediately apparent in the equations defining the
output. Note that unlike with FIR filters, in designing
IIR filters it is necessary to carefully consider "time
zero" case in which the outputs of the filter have not
yet been clearly defined.

To start a theoretical IIR we start with the
difference equation which defines how the input
signal is related to the output signal

Yaypdnnbpdn-An hxin-Drapn-Iopn-2+ -+ -0
(2.3)

where P is the forward filter order, bi are the

forward filter coefficients, Q is the feedback filter

order, % are the feedback filter coefficients, x(n) is
the input signal and y(n) is the output signal. A more
condense form of the difference equation is

P 0
y(n)y=2 bx(n—i)+Y ay(n—k)

(2.4)
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To find the impulse response we set

x(n)=0(n) (2.5)

Where o(n) is the delta impulse. The impulse
response for an IR filter follows as

h(n) =ibl_5(n —i)+iakh(n —k)
i=0 k=1 (2.6)

The Z-transform of the impulse response yields the
transfer function of the IIR filter

H(z)=Z{h(n)}= Z h(n)z ™"

n=-m (2.7)
We note that Z {5 (n)} = | then with the definition of
the impulse response and the time shift property of

the Z-transform follows
P 0
H(z)=Ybz"+Y opz "H(Z)
i=0 k=1 (2.8)

Isolating H(z) on the left hand side leads to the
desired format of the transfer function

(2.9)
The transfer function allows us to judge whether or
not a system is bounded-input, bounded-output
(BIBO) stable. To be specific, the BIBO stability
criteria require all poles of the transfer function to
have an absolute value smaller than one. In other
words, all poles must be located within a unit circle
in the z-plane. To find the poles of the transfer

o
z

function we have to extend it with z°

o
z

(or

mathematically multiply by Z ¢ )
Where O = max (P, Q) and arrive at
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E 1,3 bz
i=0 !
o 0 Ok
z - a,z
Zkzl k (2.10)
The poles of the IIR filter transfer function are the

zeros of the denominator polynomial of the transfer
function. The poles are evaluated as

0
Zo_zakzofk —0
k=1

H(z)=

2.11)

Clearly, if % * Othen the poles are not located on
the origin of the z-plane. This is in contrast to the FIR
filter where all poles are located on the origin of z-
plane.

The primary advantage of IIR filters over FIR
filters is that they typically meet a given set of
specifications with a much lower filter order than a

corresponding FIR filter. Although IIR filters have
nonlinear phase.

Data processing within MATLAB is commonly
performed off-line, That is, the entire data sequence
is available before filtering. This allows for a
noncausal, zero-phase filtering approach, which
eliminates the nonlinear phase distortion of an IIR
filter.

Design of digital IIR filters is heavily
dependants on that of their analog counterparts which
is because they are well studied, and have rich
resources, while that, MATLAB toolbox provide
some new function which are designed directly at the
Z-domain and they have special features.[2]

B. IIR butterworth filter

The Butterworth filter is the most known
theoretical IIR filter .it is designed to have a
frequency response which is as flat as mathematically
possible in the passband.

Magnitude Response

i i : : i . . . .
A . . . 1 Butterworth of order 4
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Normalized Frequency (=x rad/zample)
Figure.14 Butterworth of order 4, clearly it has a flat passband (no ripples) and rolls off towards zero in the stopband

C. Butterworth characteristic and response

The frequency response of the Butterworth filter
is maximally flat (has no ripples) in the passband,
and rolls off towards zero in the stopband. When
viewed on a logarithmic scale the response linearly
slopes towards negative infinity. The Butterworth is
the only filter that maintains this same shape for
higher orders (but with a sharper slope in the
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stopband).Compared with a Chebyshev Type I/Type
II filter or an elliptic filter, the Butterworth filter has
a slower roll-off, and thus will require a higher order
to implement a particular stopband specification.
However, Butterworth filter will have a more linear
phase response in the passband than the Chebyshev
Type I or II and elliptic filters.
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Magnitude Fesponse

Butterworth with different order
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Figure.15 Lowpass Butterworth with different orders (order 1 to 5), as the order increased the transition

width slowly reduced, and thus it require a high order to meet a specific requirement,

D. Matlab and maxflat fc is the cut-off frequency at which the filter's
MATLAB toolbox provide a generalized low y

pass butterworth function as follows magnitude response is equal to V2
[B,A] = maxflat (num,den, fc) Note : butter(N,Wn) = maxflat(N,N,Wn) except
Where in the zeros and poles
num is the numerator order ( example for N=20)
den is the denominator Order

lMagnitude Response
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Figure.16 Magnitude response for a Butterworth filter and a maxflat filter, the two filter gives the same
response shape
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Pole/Zero Plot
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Figure.17 Pole/Zero response for a Butterworth filter and a maxflat filter,the two filter gives the same
response shape but with some difference in the pole/zero plane

E. Matlab and chebyshev

MATLAB provide two Chebyshev functions
chebyl and cheby2 and they contains all design
needs.

For Lowpass Chebyshev:

[B,A] = chebyl(N,Apass,fc)

[B,A] = cheby2(N,Astop,fc)

For Highpass Chebyshev:

[B,A] = chebyl(N,Apass,fc,'high")

[B,A] = cheby2(N,Astop,fc,'high')

For passband Chebyshev

[B,A] = chebyl(N,Apass,[fcl,fc2])

frequ

[B,A] = cheby2(N,Astop,[fc1,fc2])

For stopband Chebyshev

[B,A] = chebyl(N,Apass,[fcl,fc2],'stop")

[B,A] = cheby2(N,Astop,[fc1,fc2],'stop")
Where

N is the filter order

fc is the cutoff frequency (0 < fc < 1)

fcl and fc2 is the bandpass and stopband
encies for the Bandpass or stopband filters
Apass is the passband attenuation (dB)
Astop is the stopband attenuation (dB)[3]

Magnitude Response
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Fig18. Magnitude Response

Chebyshev type I and Chebyshev type II with
the same order (order 4) and same cutoff frequency
(fc=0.4 normalized) the first one have some ripples in
the passband but also smooth at the stopband,the
second filter is the opposite, and it is clear that
Chebyshev type II has a slower transition off than the
Chebyshev type 1.
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F. MATLAB AND IIR ELLIPTIC FILTER
e Lowpass Elliptical filter:

[B,A] = ellip(N,Apass,Astop,fc)

e For Highpass Elliptical filter:

[B,A] = ellip(N,Apass,Astop,fc,'high")

e For passband Elliptical filter:

[B,A] = ellip(N,Apass,Astop,[fcl,fc2])
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e For stopband Elliptical filter:

[B,A] = ellip(N,Apass,Astop,[fc1,fc2],'stop")
Where

N is the filter order

fc is the cutoff frequency (0 <fc < 1)

Magnilude Responsa

Magndds

fcl and fc2 is the bandpass and stopband
frequencies for the Bandpass or Stopband filters

Apass is the passband attenuation (dB)

Astop is the stopband attenuation (dB) [3]

Bicermalkzed Frequercy (»x radisample)

Fig.19 An elliptical filter of order 4,it has a sharp transition bandwidth but with some ripples in the passband

and stopband

G. Comparison with other linear filters

The next figure contains the last four iir filters magnitude response, the four filters designed with the same

order and cutoff frequency.

IMagnitude Response

Magnitude

Butterworth
= Cheby 1
Cheby 2
Elliptic

02 03

=
=1
3

0.3 0.4

0.6 0.7 0.8 0.5

Mormalized Frequency (=z rad/zample)

Fig.20 Magnitude Response

Figure (20) Four filters for the same order and
cutoff frequency: Butterworth, Chebyshev type
I,Chebyshev type II and a elliptical filter, The elliptic
filter has a sharper transition band than all the others,
but also it has ripples on the whole bandwidth. The
butter worth has a flat passband, and the two
chebyshevs are in between.

H. Matlab and least pth-norm or constraines least
pth-norm

e For the least -Pth norm (The function
iirlpnorm)
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e [B, A]= iirlpnorm (num, den, fvector,
edgesvector, mvector) or

e [B, A]= iirlpnorm (num, den, fvector,
edgesvector, mvector, wvector) or

e [B, A]= iirlpnorm (num, den, fvector,

edgesvector, mvector, wvector, radius, pthnorm)

e [B, Al]= iirlpnorm (num, den, fvector,
edgesvector, mvector, wvector, radius, pthnorm,
DENYS)

For the Constrained Least -Pth norm (The
function iirlpnormc)
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[B, A] = iirlpnormec (num, den, fvector,

edgesvector, mvector) or

[B, Al]= iirlpnorm (num, den
edgesvector, mvector, wvector) or

[B, Al]= iirlpnorm (num, den
edgesvector, mvector, wvector,pthnorm)or

, fvector,

, fvector,

[B, Al]= iirlpnorm (num, den, fvector,

edgesvector, mvector, wvector, pthnorm,

mvector is the filter magnitude vector in the
least -Pth sense.

edgesvector specifies the band-edge frequency
points where a frequency band starts/stops and a don't
care regions stops/starts.

wvector is the weight error vector

Pthnorm is a two-element vector [Pmin
Pmax] allows for the specification of the minimum

DENS) and maximum values of P used in the least -Pth
Where: algorithm
num is the filter numerator order DENS specifies the grid density used in
den is the filter denominator order the optimization
fvector is the best approximation to the radius is the maximum pole radius [3]
desired frequency response
Select a filter tybe and £l all its specifications
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Fig.21 The two Lowpass filters with following specifications

[B1,Al]=iirlpnorm(10,2,[0,0.45,0.5,1],[0,0.45,0.5,11,[1,1,0,0],[1,1,10,10]);
[B2,A2]=iirlpnormc(10,2,[0,0.45,0.5,1],[0,0.45,0.5,17,[1,1,0,0],[1,1,10,10],0.9);
are designed with iirlpnorm (Least Pth-norm) and iirlpnormc (constrained Least Pth-norm by using GUI.
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Fig.22 Magnitude Response
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Fig.23 Pole/Zero Plot

The figure shows the pole/zero plot for the
iirlpnorm  (Least Pth-norm) and iirlpnormc
(Constrained Least Pth-norm). The un-constrained
design cause a zero outside the unit circle and the
constrained design prevents this problem.

Conclusion

The ability of using this advanced computer
aided design methods were demonstrated by a
specially developed GUI program for an accurate
design to choose the best kind suitable digital filters
using MATLAB techniques.

Introduction and application of recursive and
non-recursive filters were demonstrated and have
been introduced to the design of inter- digitized
computer. A Typical real examples were given and a
demonstrated tests were achieved for many different
and wide specifications of digital filter design.
Finally, the main objective of this program was to
help and guide the experienced and the non-

3/15/2014
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experienced user in order to achieve an optimum
design of digital filters.
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