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AAbbssttrraacctt:: Digital filtering occupies an extremely important position in the digital signal processing.This paper 
introduces the new concept of using Matlab with Graphical User Interface in designing FIR(Finite Impulse 
Response) digital filters and IIR(Infinite Impulse Response) digital filters. Matlab, which is a high-performance 
numerical calculation program and provides a powerful function of graphical display. Matlab is widely used in 
engineering calculation, numerical analysis,etc. This paper introduces the definition and basic principles of FIR & 
IIR digital filters. In this paper we have designed Graphical User Interface consists of almost all types of IIR filters 
and FIR filters. User simply have to insert filter specifications on GUI and get magnitude response, phase response, 
etc of required the filter. 
[Adnan Affandi, Abdullah M. Dobaie and Mubashshir Husain. Digital Filters Design using Matlab with 
Graphical User Interface (GUI). Life Sci J 2014;11(5):336-348]. (ISSN:1097-8135). 
http://www.lifesciencesite.com. 45 
 
KKeeyywwoorrddss:: FIR digital filter,IIR digital filters Matlab,Graphical User Interface,etc.  
 
1. Introduction 

A fundamental aspect of signal processing is 
filtering. Filtering involves the manipulation of the 
spectrum of a signal by passing or blocking certain 
part of the spectrum, depending on the frequency of 
those parts. Filters are designed according to what 
kind of manipulation of the signal is required for a 
particular application. Digital filters are implemented 
using three fundamental building blocks: an adder, a 
multiplier, and a delay element and they represent the 
Capacitor, Inductors and Resistance in the analog 
filtering. 

With these basic building blocks, the two 
different filter structures can easily be implemented. 
These two structures are Infinite Impulse Response 
(IIR) and Finite Impulse Response (FIR), depending 
on the form of the system’s response to a unit pulse 
input. IIR filters are commonly implemented using a 
feedback (recursive) structure, while FIR filters 
usually require no feedback (non-recursive). The 
design process of a digital filter is long and some way 
is a kind of routine if done by hand. With the aid of 
computer programs performing filter design 
algorithms, designing and optimizing filters can be 
done relatively quickly. 

A filter with linear phase response is desirable 
in many applications such as image processing and 
data transmission. One of the desirable characteristics 
of FIR filters is that they can be designed very easily 
to have linear phase.[1] 
 
2. Designing of fir digital filters 
A. Designing an fir (finite impulse response) filters 

FIR filters are one of two primary types of 
digital filters used in Digital Signal Processing (DSP) 
applications, the impulse response is "finite" because 
there is no feedback in the filter as in the second type 
of filters (It will explained in the IIR filters part).A 
useful designing model for the design specifications 
in FIR design is to think of each specification as one 
of the angles in a triangle as shown fig.1. 

 
 

Fig.1 FIR triangle model 
 
The model in Fig 2.2 is used to understand the 

degrees of freedom available when considering a 
filter specification. Because the sum of the angles is 
fixed, we can at most select the values of two of the 
specifications. The third specification will be 
determined by the design algorithm utilized. 
Moreover, as with the angles in a triangle, if we make 
one of the specifications larger/smaller, it will impact 
one or both of the other specifications. 
B. Optimal fir designs with fixed transition width 
and filter order 

Truncated-and-windowed impulse response de-
sign algorithm is very simple and reliable; it is not 
optimal in any sense. The designs are generally 

T.Width 

Order 

Ripple 
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inferior to one of the order or the transition width or 
the passband/stopband ripples, the exceeded value of 
any of them is typically undesirable in the Optimal 
designs are computed by minimizing some measure 
of the deviation between the filter to be designed and 
the ideal filter. The most common optimal FIR design 
algorithms are based on fixing the transition width 
and the order of the filter. The deviation from the 
ideal response is measured only by the 
passband/stopband ripples. This deviation or error 
can be expressed mathematically as 

( ) ( ) ( )j
LPE H H e 

    
 (2.1) 

Where 
( )aH 

is the zero-phase response of 

the designed filter and 
[0, ][ ,1]pass stop  

. It is 
still necessary to define a measure to determine “the 

size” of 
( )E 

(the quantity we want to minimize as 
a result of the optimization) 

The most often used measures are the L-norm 
(L∞ or L2) .In order to allow for different peak 
ripples in the passband and stopband, a weighting 
function W (w) is usually introduced 

( ) ( ) ( ) ( )j
W LPE W H H e 

          (2.2) 
The most famous two filter kinds in this field 

are the Equiripple and the Least Square Filter and 
they will described later 
 

 
Fig.2 FIR triangle model for fixed transition width 
and filter order 
 
C. Optimal fir designs with fixed transition width 
and peak passband/ stopband ripple 

Fixed Transition width and passband/stopband 
ripple allow us to reach an optimum filter with a 
minimum number of tabs (order). The equations are 
even more dramatic when the passband ripple and 
stopband ripple specifications are different (unlike 
the equiripple filters) . The reason is that the 
truncated-and windowed impulse response methods 
always give a result with approximately the same 
passband and stopband peak ripple. Therefore, 
always the stricter peak ripple will cause in 
exceeding (possibly significantly) all other ripple 
constraints at the expense of unnecessarily large filter 
order. To illustrate this, we turn to a different 

equiripple design in which both the peak ripples and 
the transition width are fixed. In minimum-phase 
designs with fixed transition width and peak 
passband/stopband ripple the same procedure can be 
used to design minimum-phase filters with fixed 
transition width and peak passband/ stopband ripple. 
In this case, rather than obtaining smaller ripples, the 
benefit is meeting the same transition width and peak 
passband/ stopband ripples with a reduced filter order. 

 

 
Fig3. FIR triangle model for fixed transition width 
and peak passband/stopband ripple 
 
D. Optimal fir designs with fixed peak ripple and 
filter order 

Fixing the filter order and the peak ripple values 
should result in a smaller transition width. In 
minimum-phase designs with fixed peak ripple and 
filter order, once again, if linear-phase is not a 
requirement, a minimum-phase filter can be designed 
that is better in some sense to a comparable linear 
phase filter. In this case, for the same filter order and 
peak ripple value, a minimum-phase design results in 
a smaller transition width than a linear-phase design. 
 

 
Fig.4 FIR triangle model for fixed peak ripple and 
filter order 
 
E. Designing optimal fir equiripple filters with 
fixed transition width and filter order by using 
graphical user interface 

 This linear phase filter can be designed with 
the function firpm or in minimax concept by firgr. 

B=firpm (N, fvector, mvector) or 
B=firpm (N, fvector, mvector, wvector) or 
B=firgr (N, fvector, mvector) or 
B=firgr (N, fvector, mvector, wvector) 
 And for Hilbert Transform that have odd 

symmetry 
B=firpm (N, fvector, mvector, 'Hilbert') or 
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B=firpm (N, fvector, mvector, wvector, 
'Hilbert') or 

B=firgr (N, fvector, mvector, 'Hilbert') or 
B=firgr (N, fvector, mvector, wvector, 'Hilbert') 
 And for the Differentiator with odd 

symmetry 
B=firpm (N, fvector, mvector, 'differentiator') or 
B=firpm (N, fvector, mvector, wvector, 

'differentiator') or 
B=firgr (N, fvector, mvector, 'differentiator') or 

B=firgr (N, fvector, mvector, wvector, 
'differentiator') 

Where 
N is the filter Order (returns a length N+1 tabs) 
fvector is the best approximation to the 

desired frequency response 
mvector  is the filter magnitude vector in the 

least -Pth sense. 
wvector  is the weight error vector [3] 

 
 

 
Fig.5 Using Graphical User Interface for designing Hilbert bandpass filter (Fpass=0.1, Fstop=0.9, Order=30). 
 

 
Fig.6 Showing Magnitude Response of Hilbert bandpass filter (Fpass=0.1, Fstop=0.9 & Order=30). 
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Fig.7 Phase response of a bandpass filter 

 
F. Fir least-squares and fir constrained least-squares 
filters 

Equiripple designs may not be desirable if we want 
to minimize the energy of the error (between ideal and 
actual filter) in the passband /stopband. Consequently, if 
we want to reduce the energy of a signal as much as 
possible in a certain frequency band, least-squares 
designs are preferable. 
G. Designing Optimal Fir Least Square Filters With 
Fixed Transition Width And Filter Order 

This filter can be designed with the function firls 
as follows 

B=firls (N, fvector, mvector) or 
B=firls (N, fvector, mvector, bwvector) 
And for Hilbert Transform that have odd 

symmetry 

B= firls (N, fvector, mvector, 'Hilbert') or 
B= firls (N, fvector, mvector, bwvector, 'Hilbert') 
And for the Differentiator with odd symmetry 
B= firls (N, fvector, mvector, 'differentiator') or 
B= firls (N, fvector, mvector, bwvector, 

'differentiator') 
Where 
N  is the filter Order (returns a length N+1 tabs) 
fvector      is the best approximation to the 

desired frequency response 
mvector      is the filter magnitude vector in the 

least -Pth sense. 
bwvector  is the weight per band vector [3]. 
 

 

 

Fig.8 Designing A lowpass Least Square filter with order=20 and band edges at 1 0.4f   and 2 0.5f   (normalized) 
by using GUI. 
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Fig.9 A lowpass Least Square filter with order=20 and band edges at 1 0.4f 
 and 2 0.5f 

 (normalized), 
compared with an Equiripple filter with the same specifications 

 
An equiripple filter designed with firpm exhibits 

equiripple behavior. And a least square filter 
designed with firls filter has a better response over 
most of the passband and stopband, but at the band 
edges (f = 0.4 and f = 0.5), the response is further 
away from the ideal than the firpm filter. This shows 
that the firpm filter's maximum error over the 
passband and stopband is smaller and, in fact, it is the 
smallest possible for this band edge configuration and 
filter length. 
H. Fir windowing 
I. Kaiser window design technique 

May be it is quite important to describe at least 
one of the window kind and we will take the Kaiser 
window as an example. The main problem with the 
window design method is that it is very difficult to 
trade-off between attenuation and transition 
bandwidth. Kaiser developed a window function and 
a design formula that will usually result in a filter 
length less than those designed by using other 
window methods.Given a lowpass filter, the passband 

region is from 0 to p  and the stopband region from 

s to   as described in the following fig  
 

 
Fig.10 the windowing lowpass filter components 

 

S P    
  (3.6) 

220logA  
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 (3.8) 
Where N controls the transition bandwidth and β 
controls the sidelobe attenuation. 
The resultant formula by Kaiser: 

8

2.285

A
N






  (3.9) 
 

 
(3.10)  

These formulas can be used to estimate the values of 
N and β. To design a filter of minimal filter length while 
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satisfying a given set of specification may require a few iterations to fine-tune the values of N. 

 

 
Fig.11 Kaiser window for different orders (order 1 to 6) .The transition bandwidth decreases with the increasing of the 
order. 
 
J. Matlab and fir raised cosine 

The function firrcos can be used to design a raised 
cosine FIR filter and a square root FIR raised cosine in 
MATLAB 

B=firrcos (N,fc,TW,Fs)   or 
B=firrcos (N,fc,TW,Fs,'sqrt') 
With a rolloff factor: 
B=firrcos (N,fc,Fs,'rolloff')  or 
B=firrcos (N,fc,Fs,'rolloff','sqrt') 
With a delay 
B=firrcos (N,fc,TW,Fs,'normal',delay)  or 
B=firrcos (N,fc,TW,Fs,'sqrt',delay) 

With a rolloff factor and delay 
B=firrcos (N,fc,Fs,'rolloff','normal',delay)  or 
B=firrcos (N,fc,Fs,'rolloff','sqrt',delay) 
Where: 
N  is the filter Order (returns a length N+1 tabs) 
fc is the passband edge frequency 
TW  transition bandwidth (Fstop – Fpass) 
Fs  is the sampling frequency (= 2 Nyquist 

Frequency) 
delay   is a variable integer delay[3] 
 

 

 
Fig.12 A Raised Cosine filter (order 20) with a cutoff frequency off 0.5 (normalized) and a roll-off factor R=0.1, R=0.3, 
R=0.5, R=0.7, and R=0.9 by using GUI. 
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Fig.13 Magnitude Response 

 
Different roll-off factors (R=0.1, R=0.3, R=0.5, 

R=0.7, R=0.9) with the same order (order=20) and 
cutoff frequency (fc = 0.5).The figure shows the 
squared magnitude and the different unity gain 
regions and the attenuation regions and the raised 
cosine regions and it easily to figure out the relation 
between them and the rolloff factor 

 
3- Infinite Impulse Response(IIR) Digital Filter 
A. Designing an IIR (Infinite Impulse Response) 
filters 

IIR (Infinite Impulse Response) or Recursive 
filters are signal processing filters which re-use one 
or more output(s) of the filter as inputs. This 
feedback results in an unending impulse response 
characterized by exponentially growing, decaying, or 
sinusoidal signal output components. 

In digital IIR filters, the output feedback is 
immediately apparent in the equations defining the 
output. Note that unlike with FIR filters, in designing 
IIR filters it is necessary to carefully consider "time 
zero" case in which the outputs of the filter have not 
yet been clearly defined. 

To start a theoretical IIR we start with the 
difference equation which defines how the input 
signal is related to the output signal 

0 1 1 2( ) ( ) ( 1) ( ) ( 1) ( 2) ( )p Qyn bxn bxn bxn P yn yn yn Q               

 (2.3) 

where P is the forward filter order, ib
are the 

forward filter coefficients, Q is the feedback filter 

order, ia
 are the feedback filter coefficients, x(n) is 

the input signal and y(n) is the output signal. A more 
condense form of the difference equation is 

0 1

( ) ( ) ( )
QP

i k
i k

y n b x n i y n k
 

    
 (2.4) 

To find the impulse response we set 

( ) ( )x n n
 (2.5) 

Where ( )n is the delta impulse. The impulse 
response for an IIR filter follows as 

0 1

( ) ( ) ( )
QP

i k
i k

h n b n i h n k 
 

    
 (2.6) 

The Z-transform of the impulse response yields the 
transfer function of the IIR filter 

 ( ) ( ) ( ) n

n

H z Z h n h n z






  
 (2.7) 

We note that Z {δ (n)} = 1 then with the definition of 
the impulse response and the time shift property of 
the Z-transform follows 

0 1

( ) ( )
QP

i k
i k

i k

H z b z z H Z 

 

  
 (2.8) 

Isolating H(z) on the left hand side leads to the 
desired format of the transfer function 

0

1

( )
1

P i
ii

Q k
kk

b z
H z

z













  (2.9) 

The transfer function allows us to judge whether or 
not a system is bounded-input, bounded-output 
(BIBO) stable. To be specific, the BIBO stability 
criteria require all poles of the transfer function to 
have an absolute value smaller than one. In other 
words, all poles must be located within a unit circle 
in the z-plane. To find the poles of the transfer 

function we have to extend it with 

O

O

z

z  (or 

mathematically multiply by

O

O

z

z ) 
Where O = max (P, Q) and arrive at 
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0

1

( )

P O i
ii

QO O k
kk

b z
H z

z z













  (2.10) 

The poles of the IIR filter transfer function are the 
zeros of the denominator polynomial of the transfer 
function. The poles are evaluated as 

1

0
Q

O O k
k

k

z z 



 
 (2.11) 

Clearly, if 
0k 

then the poles are not located on 
the origin of the z-plane. This is in contrast to the FIR 
filter where all poles are located on the origin of z-
plane. 

The primary advantage of IIR filters over FIR 
filters is that they typically meet a given set of 
specifications with a much lower filter order than a 

corresponding FIR filter. Although IIR filters have 
nonlinear phase. 

Data processing within MATLAB is commonly 
performed off-line, That is, the entire data sequence 
is available before filtering. This allows for a 
noncausal, zero-phase filtering approach, which 
eliminates the nonlinear phase distortion of an IIR 
filter. 

Design of digital IIR filters is heavily 
dependants on that of their analog counterparts which 
is because they are well studied, and have rich 
resources, while that, MATLAB toolbox provide 
some new function which are designed directly at the 
Z-domain and they have special features.[2] 
B. IIR butterworth filter 

The Butterworth filter is the most known 
theoretical IIR filter .it is designed to have a 
frequency response which is as flat as mathematically 
possible in the passband. 

 

 
Figure.14 Butterworth of order 4, clearly it has a flat passband (no ripples) and rolls off towards zero in the stopband 
 
C. Butterworth characteristic and response 

The frequency response of the Butterworth filter 
is maximally flat (has no ripples) in the passband, 
and rolls off towards zero in the stopband. When 
viewed on a logarithmic scale the response linearly 
slopes towards negative infinity. The Butterworth is 
the only filter that maintains this same shape for 
higher orders (but with a sharper slope in the 

stopband).Compared with a Chebyshev Type I/Type 
II filter or an elliptic filter, the Butterworth filter has 
a slower roll-off, and thus will require a higher order 
to implement a particular stopband specification. 
However, Butterworth filter will have a more linear 
phase response in the passband than the Chebyshev 
Type I or II and elliptic filters. 
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Figure.15 Lowpass Butterworth with different orders (order 1 to 5), as the order increased the transition 
width slowly reduced, and thus it require a high order to meet a specific requirement, 

 
D. Matlab and maxflat 

MATLAB toolbox provide a generalized low 
pass butterworth function as follows 

[B,A] = maxflat (num,den,fc) 
Where 
num  is the numerator order 
den  is the denominator Order 

fc  is the cut-off frequency at which the filter's 

magnitude response is equal to 
1

2  
Note : butter(N,Wn) = maxflat(N,N,Wn) except 

in the zeros and poles 
( example for N=20) 

 
 

 
Figure.16 Magnitude response for a Butterworth filter and a maxflat filter, the two filter gives the same 
response shape 
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Figure.17  Pole/Zero response for a Butterworth filter and a maxflat filter,the two filter gives the same 
response shape but with some difference in the pole/zero plane 
 
E. Matlab and chebyshev 

MATLAB provide two Chebyshev functions 
cheby1 and cheby2 and they contains all design 
needs. 

For Lowpass Chebyshev: 
[B,A] = cheby1(N,Apass,fc) 
[B,A] = cheby2(N,Astop,fc) 
For Highpass Chebyshev: 
[B,A] = cheby1(N,Apass,fc,'high') 
[B,A] = cheby2(N,Astop,fc,'high') 
For passband Chebyshev 
[B,A] = cheby1(N,Apass,[fc1,fc2]) 

[B,A] = cheby2(N,Astop,[fc1,fc2]) 
For stopband Chebyshev 
[B,A] = cheby1(N,Apass,[fc1,fc2],'stop') 
[B,A] = cheby2(N,Astop,[fc1,fc2],'stop') 
Where 
N is the filter order 
fc is the cutoff frequency (0 < fc < 1) 
fc1 and fc2  is the bandpass and stopband 

frequencies for the Bandpass or stopband filters 
Apass is the passband attenuation (dB) 
Astop is the stopband attenuation (dB)[3] 

 
 

 
Fig18. Magnitude Response 

 
Chebyshev type I and Chebyshev type II with 

the same order (order 4) and same cutoff frequency 
(fc=0.4 normalized) the first one have some ripples in 
the passband but also smooth at the stopband,the 
second filter is the opposite, and it is clear that 
Chebyshev type II has a slower transition off than the 
Chebyshev type I. 

F. MATLAB AND IIR ELLIPTIC FILTER 
 Lowpass Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,fc) 
 For Highpass Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,fc,'high') 
 For passband Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,[fc1,fc2]) 
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 For stopband Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,[fc1,fc2],'stop') 
Where 
N is the filter order 
fc is the cutoff frequency (0 < fc < 1) 

fc1 and fc2 is the bandpass and stopband 
frequencies for the Bandpass or Stopband filters 

Apass is the passband attenuation (dB) 
Astop is the stopband attenuation (dB) [3] 

 
 

 
Fig.19 An elliptical filter of order 4,it has a sharp transition bandwidth but with some ripples in the passband 
and stopband 

 
G. Comparison with other linear filters 

The next figure contains the last four iir filters magnitude response, the four filters designed with the same 
order and cutoff frequency. 

 

 
Fig.20 Magnitude Response 

 
Figure (20) Four filters for the same order and 

cutoff frequency: Butterworth, Chebyshev type 
I,Chebyshev type II and a elliptical filter, The elliptic 
filter has a sharper transition band than all the others, 
but also it has ripples on the whole bandwidth. The 
butter worth has a flat passband, and the two 
chebyshevs are in between. 
H. Matlab and least pth-norm or constraines least 
pth-norm 

 For the least -Pth norm (The function 
iirlpnorm) 

 [B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector) or 

 [B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector) or 

 [B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector, radius, pthnorm) 

 [B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector, radius, pthnorm, 
DENS) 

For the Constrained Least -Pth norm (The 
function iirlpnormc) 
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[B, A] = iirlpnormc (num, den, fvector, 
edgesvector, mvector) or 

[B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector) or 

[B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector,pthnorm)or 

[B, A]= iirlpnorm (num, den, fvector, 
edgesvector, mvector, wvector, pthnorm, 

DENS) 
Where: 
num  is the filter numerator order 
den  is the filter denominator order 
fvector  is the best approximation to the 

desired frequency response 

mvector  is the filter magnitude vector in the 
least -Pth sense. 

edgesvector specifies the band-edge frequency 
points where a frequency band starts/stops and a don't 
care regions stops/starts. 

wvector   is the weight error vector 
Pthnorm  is a two-element vector [Pmin 

Pmax] allows for the specification of the minimum 
and maximum values of P used in the least -Pth 
algorithm 

DENS  specifies the grid density used in 
the optimization 

radius  is the maximum pole radius [3] 
 

 
Fig.21 The two Lowpass filters with following specifications 
 
[B1,A1]=iirlpnorm(10,2,[0,0.45,0.5,1],[0,0.45,0.5,1],[1,1,0,0],[1,1,10,10]); 
[B2,A2]=iirlpnormc(10,2,[0,0.45,0.5,1],[0,0.45,0.5,1],[1,1,0,0],[1,1,10,10],0.9); 
are designed with iirlpnorm (Least Pth-norm) and iirlpnormc (constrained Least Pth-norm by using GUI. 
 

 
Fig.22 Magnitude Response 
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Fig.23 Pole/Zero Plot 

 
The figure shows the pole/zero plot for the 

iirlpnorm (Least Pth-norm) and iirlpnormc 
(Constrained Least Pth-norm). The un-constrained 
design cause a zero outside the unit circle and the 
constrained design prevents this problem. 

 
Conclusion 

The ability of using this advanced computer 
aided design methods were demonstrated by a 
specially developed GUI program for an accurate 
design to choose the best kind suitable digital filters 
using MATLAB techniques. 

Introduction and application of recursive and 
non-recursive filters were demonstrated and have 
been introduced to the design of inter- digitized 
computer. A Typical real examples were given and a 
demonstrated tests were achieved for many different 
and wide specifications of digital filter design. 
Finally, the main objective of this program was to 
help and guide the experienced and the non-

experienced user in order to achieve an optimum 
design of digital filters. 
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