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Abstract: This paper aims at comparing particle swarm optimization (PSO) with genetic algorithm (GA) for 
portfolio management in a constrained portfolio optimization problem in which short selling is not permitted. The 
minimized objective function is value-at-risk calculated by using historical simulation. The tests results reveal that 
these methods are able to calculate consistently the optimized solutions within a proper time. With respect to the 
statistical calculations, it is concluded that these algorithms do not lead to a best solution identically. In terms of 
time of implementation and number of iterations, particle swarm optimization seems to reach more swiftly to the 
solution compared with genetic algorithm; and in terms of sensitivity to the initial position of the particles, particle 
swarm optimization is more leading than genetic algorithm. Among other findings of this paper is that 50 particles 
(chromosomes) are sufficient for problems with up to 20 assets. 
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Introduction 

Portfolio refers to a set of assets invested by 
an investor. A portfolio embraces technically a 
complete set of real and financial assets. Financial 
assets include different types of securities like bonds, 
ordinary stocks, preferred stocks, and financial 
derivatives (DiTraglia, F.J. and et al., 2013). Portfolio 
management is the most important matter for a 
portfolio. Portfolio management constitutes the major 
part and focal point of investment management 
concept. Portfolio management embraces all 
dimensions of the portfolio and it includes 
combination of stocks existing in the portfolio, 
weight of each stock in the portfolio, and the best 
time for changing the combination. On the other 
hand, the most important part of portfolio 
management is portfolio optimization which refers to 
the selection of the best combination of financial 
assets so as to maximize return on investment 
portfolio and minimize portfolio risk as much as 
possible. In fact in portfolio optimization, selection of 
the optimized assets and securities with a certain 
amount of capital is the main matter. It must be noted 
that a portfolio that includes several assets (Portfolio 
diversification) reduces risk in general (risk of an 
asset refers to a probable change in its future return) 
(Reboredo, J.C., 2013).  

There are different methods for optimization 
in general and portfolio optimization in particular. 
Many studies have been carried out in the recent 
years regarding development of portfolio 
optimization methods based on new theories 

including value at risk theory. This paper seeks to 
design an optimal portfolio which minimizes value at 
risk calculated by historical simulation based on 
intelligent optimization methods and with regard to 
the constraints on the weights of the assets in the 
portfolio. Intelligent optimization methods are very 
more quick and reliable compared with older 
methods (Huang, W., et al., 2012). One of the main 
issues raised in the capital market is selection of an 
optimal portfolio (with a minimum risk).  

The objective of the present paper is 
managing portfolio by using value at risk and 
comparing genetic algorithm with particle swarm 
optimization. The results obtained by this paper may 
be used by all natural and legal investors to improve 
portfolio selection and reduce risks.  

 
2. Literature Review 

Here, a summary of several financial 
definitions and prerequisites used in this paper and 
then studies carried out in this regard are presented. 

 
2.1 Theoretical Concepts 

Asset: anything that produces profit is called 
asset. In the economy, assets are divided into two 
groups namely, financial assets (their physical aspect 
does not have value and they are regarded among 
securities) and real assets (their physical aspect has 
value and they are tangible) (Alexander, G.J. et al., 
2011).  

Financial market: any network in which 
goods and services are traded. The market does not 
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have a physical concept and does not occupy a 
specific space necessarily (Das, S. et al., 2010). 

Stock Exchange: an official capital market in 
which stocks of companies or bonds of government 
or reliable private institutions are traded as per 
specific rules and regulations (Chonghui, J. et al., 
2013).  

Stock: a part of the assets of a company or a 
factory. The stockholder is a partner in the ownership 
of a manufacturing firm or company to the extent of 
the held stocks (Jiang, C., et al., 2010).  

Investment: passing up consumption in the 
present to hope to consume more in the future 
(Baptista, A. M., 2012).  

Portfolio: a combination of assets 
constituted for investments by an investor 
(Alexander, G. J. et al., 2010).  

Return on assets: taking benefit from an 
asset; this paper applies three types of returns. 

Simple periodic return => Rt = (Pt – Pt-1) / Pt-

1 , where Pt denotes the price of asset at t time. 
Continuously compounded return => rt = 

ln(1 + Rt) , where rt denotes natural logarithm of 
simple return.  

Portfolio return => R⊓, t = ΣωiRi,t (i = 1, … 
n) , where ⊓ denotes portfolio, N is type of asset, i 
represents weight of the related asset in the portfolio 
ωi, and ωi is a percentage of portfolio value due to the 
i-th asset (Mansoorian, A., et al., 2013).  

Actualized return => a return that has been 
actualized or obtained (Durham, G., et al., 2012). 

Expected return => an estimated return of an 
asset that investors expect to obtain in the future 
(GHATTASSI, I., 2013).  

Risk: the measurable potential loss is called 
risk in which two variables namely loss and 
uncertainty are involved (Bonato, M., et al., 2012).  

Value at risk (VaR): X percent confidence 
(1- α) in preserving currency V (value) in N (time) 
days. The advantages of this method include its 
applicability to stocks, bonds, goods, etc., 
applicability to financial instruments whose return 
distribution is normal or abnormal, being a 
framework for risk measurement and analysis, 
preventing lateral calculations, and having a leading 
approach towards risk measurement (Holton, G. A., 
2003).  

Conditional value at risk (CVaR): loss 
prediction under unfavorable conditions. At 
confidence level 1 - α, it equals CVaR(1-α) = -E[X | X 
≤ -VaR(1-α)], where X denotes real-valued random 
variable, f x (x) is the probability density function and 
Xα = VaR(1-α) (Inui, K., et al., 2005).  

Genetic algorithm: it is based on Darwin's 
evolutionary theory and the solutions of problems 
solved through genetic algorithm improve gradually. 

This algorithm starts from a set of solutions 
(chromosomes / population). In this method, 
solutions obtained from one population are used for 
producing next population. Selection of some 
solutions (parents) for creating new solutions (off 
springs) is based on fitness value (Blanco, A., et al., 
2001).  

PSO algorithm: it presents a set of solutions 
(with learning feature) which is called particle (like 
chromosome). In portfolio, total weights of assets 
constitute a particle. Each particle in PSO has a 
position in the search space. The position of each 
particle is determined based on the experience of the 
particle and its neighbors. In each PSO, two simple 
behaviors are modeled namely, movement of each 
particle towards the best and nearest neighbor, and 
return of each particle to a state that has been better 
for it earlier (Mirzaei, et al., 2011).  

 
2.2 Research Background 

The studies related to the subject of this 
paper are presented in the following. 

(Goovaerts, M. and et. al, 2012), in the 
actuarial research, distortion, mean value and 
Haezendonck–Goovaerts risk measures are concepts 
that are usually treated separately. (Ruodu, W. et. al, 
2013), provide a new lower bound for any given 
marginal distributions and give a necessary and 
sufficient condition for the sharpness of this new 
bound. For the sum of dependent risks with an 
identical distribution, which has either a monotone 
density or a tail-monotone density, the explicit values 
of the worst Value-at-Risk and bounds on the 
distribution of the total risk are obtained. (Bianconi, 
M. et. al, 2013), We analyze a sample of 64 oil and 
gas companies of the nonrenewable energy sector 
from 26 countries using daily observations on return 
on stock from July 15, 2003 to August 14, 2012. A 
panel model with fixed effects and Tarch effects 
shows significant prices for specific risk factors 
including company size and debt-to-equity and 
significant prices for common risk factors including 
the U.S. Dow Jones market excess return, the Vix, 
the WTI price of crude oil, and the FX of the euro, 
Chinese yuan, Brazilian real, Japanese yen, and 
British pound vis-a-vis the U.S. dollar. (Burchi, A., 
2013), This paper aims to investigate the effects of 
different models to estimate the market risk in the 
management of the trading book. The study takes into 
account the events occurring in the financial markets 
and the new prudential rules. 
Design/methodology/approach – The author 
compares different models and proposes an 
opportunity cost function able to evaluate the cost 
related to capital requirements. This paper presents 
several state of the art methods to evaluate the 
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adequacy of almost any given market risk model. 
Existing models are enhanced by in-depth analysis 
and simulations of statistical properties revealing 
some previously unknown effects, most notably 
inconsistent behavior of alpha and beta errors. 
Furthermore, some new market risk validation 
models are introduced. This paper examines the 
relation between bank charter value and risk taking. 
Using a sample of U.S. banks over the period 1990–
2006, we find that the relation is U-shaped: as charter 
value increases, risk taking first decreases and then 
increases. This finding is robust across alternative 
measures of risk taking and an estimation method 
that accounts for the joint determination of charter 
value and risk taking. (Zapodeanu, D. et. al, 2012), In 
the Value at Risk methodology the estimation models 
are classified as: parametric, nonparametric, semi-
parametric; they present the parametric models 
(GARCH models) used in Value at Risk and the 
connections that can be established between ALM 
models and Value at Risk. We present the 
Conditional Value-at-risk and offer and example on 
how to calculate CVaR. (So, M. et. al, 2013), In this 
paper, we develop modeling tools to forecast Value-
at-Risk and volatility with investment horizons of 
less than one day. We quantify the market risk based 
on the study at a 30-min time horizon using modified 
GARCH models. The evaluation of intraday market 
risk can be useful to market participants (day traders 
and market makers) involved in frequent trading. As 
expected, the volatility features a significant intraday 
seasonality, which motivates us to include the 
intraday seasonal indexes in the GARCH models. 

 
3. Research Methodology 

For the empirical part of this paper, data 
pertaining to active market of Stock Exchange in 
America for 30 stocks (companies) from 5 January 
1987 to 30 May 2006 has been used. In sum, 4896 
data points were obtained. Using above data, 
computational model of the return logarithm was 
determined as rt,k = log (pt.k / p (t-1),k). As per the 
research literature, objective function N is variable 
and its mathematical model equals, 
minω1 … ωn (VaR), 
s.t. 
Σωi = 1 (i = 1 ... n) 
∀i : 0 ≤ ωi ≤ 1 

The main objective of this paper is solving 
the problem by two PSO and GA algorithms and 
comparing their functions in reaching the solution. So 
the problem assumptions are as per below.  
 
a. Initial value of particles / chromosomes in 
algorithms 

Chromosomes and particles must be initially 
valued, because the optimal zone in the probable 
space is not known in advance. To implement valuing 
process, below steps are passed through. 
 Creating the vector  1, 2,...S N


, where N is the 

number of assets in the problem. 

 Creating a random permutation of vectors  

and  

 Producing sequence weights determined by  
 Normalizing weights determined for 

maximizing up to one 
 
b. Size of algorithms population in the model 

In PSO algorithm, size of population refers 
to the number of particles. The more the number of 
particles in the population is, the more the initial 
divergence of the population will be. As the 
population gets larger, in each round of PSO 
algorithm ring, more search space is covered and 
computational sophistication is also increased and 
searches are converted into parallel random search. 
Compared with low particles, as the number of 
particles gets more, we will reach solution in fewer 
rings. In this paper 30 particles are not sufficient. 
Thus for most experiments carried out here, 
population size has been selected 50. 
 
c. Algorithms parameters in the model 

To use the related algorithms for solving the 
optimization problem, it is necessary to specify their 
parameters experimentally. Thus below values have 
been selected for PSO. 

ωmin = 0.4 ωmax = 0.9 

C2 = 0.5 C1 = 0.5 

P2 = 0.9 p1 = 0.9 
 

Genetic algorithm has two parameters as below. 
 Calculating probability of a combination in two 

selected chromosomes  
 Calculating probability of a mutation in the 

offspring (two solutions) 
Occurrence probability of a combination is 

assumed 0.8 (or 80%) and probability of a mutation 
is assumed 0.01 (or 1%). Confidence level for VaR 
and CVaR has been considered 95%. Tests of this 
paper cover two goals namely, ability of finding the 
optimal solution and speed of convergence. To 
realize ability of finding optimal solution, below 
parameters have been considered. 
 The average number of iterations required for an 

algorithm ( ) 
 Standard deviation of the number of iterations 

( )  
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 The mean error between the best solution found 
by an algorithm in each implementation and the 
best solution found in all implementations 
( ) 

 Standard deviation of error  ( ) 
Two late items depict that how much the 

algorithm is proper for finding the optimal solution in 
the problem. To investigate convergence speed, each 
algorithm has been considered 5 times for each of the 
5 sub sets (random selection), implementation and 
average of time of each iteration are calculated. 
Parameters are defined as per below. 
 Time of each iteration  
 Average time of each iteration   
 Average time required for convergence of each 

algorithm  
To know how long it does take for an 

algorithm to converge, below assumptions are 
regarded. 

 If the algorithm is iterated  
times, by 0.1% approximation it reaches the best 
solution found in 97.7% times of a specific 
implementation. 

 The main assumption is that has an 
approximate normal distribution. The test has 
been carried out via matlab 7. The codes applied 
in the software have been mentioned in the 
appendix.  

 
4. Research Findings 
4.1 Risk Values 

To show the effect of selecting different 
horizons for inputs, portfolios with 5 assets (stocks of 
M3, Citigroup, Coca Cola, General Motors, and 
Microsoft) have been optimized for different risks 
size. Sizes of risks are namely variance, VaR 
calculated by historical simulation, and CVaR 
calculated by historical simulation. Figure 1 to 3 and 
table 1 presents weights of optimal portfolio by using 
different objective functions and different time 
horizons for data. In the figures, Y-axis shows the 
weights and X-axis shows the time (year).  

 Figure 1. Minimization of variance of portfolio 
returns 

 
Figure 2. Minimization of VaR of portfolio returns 

 

 Figure 3. Minimization of CVaR of portfolio returns 
 

With regard to the size of applied risk, 
combination of a portfolio may vary highly. For 
example, this situation can be seen as regards Coca 
Cola stocks in the portfolio generated by data of 5 
years (a five-year horizon). By this horizon, the 
weight of Coca Cola stocks equals 50.1% in a 
portfolio that minimizes the variance, equals 69.7% 
by VaR minimization and 35.6% by CVaR 
minimization.  

 
Table 1. Variance, VaR, and CVaR minimization of 

portfolio returns 
CVaR VaR Variance Minimization 
%0.12 %5.56 - Variance 
%0.49 - %0.77 VaR 
- %5.09 %0.09 CVaR 

 
Different risks size of portfolios with 5 

identical assets that are optimized by VaR, CVaR, 
and variance minimization are compared. Then these 
portfolios are measured by different metrics. 
Minimization reveals that the objective function has 
been minimized. Variance, VaR, and CVaR shows 
standard deviation of a portfolio that has minimized 
these criteria. 
4.2 Ability to Find the Optimal Solution 

Ability to generate the optimal solution by 
these algorithms to optimize the problem with 50 
particles / chromosomes and with portfolio including 
5, 10, and 20 sub sets was tested and the results are 
presented in table 2. With regard to the executive 
model of the research, strategies that have been used 
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in calculations are namely PSO (Bumping, Amnesia, 
Random, Penalty) and GA (Roul./Basic, 

Tourn./Basic, Roul./Arith, Tourn./Arith) , and genetic 
algorithm has been calculated for 5-item sub sets.   

 
Table 2. Minimization of variance, VaR, and CVaR of portfolio returns 

  VaR  N  N  Algorithm N  

% 0.79 % 0.58 21 44 PSO Bumping 

5 

% 0.73 % 0.55 31 79.7 PSO Amnesia 
% 0.6 % 0.37 522.6 562.7 PSO Random 

% 0.69 % 0.37 54.1 93.8 PSO Penalty 
% 0.72 % 0.52 168.7 142 GA Roul./Basic 
% 0.78 % 0.6 242.1 172.6 GA Tourn./Basic 
% 1.06 % 0.91 574.2 472.6 GA Roul./Arith 
% 1.02 % 1.02 415 269.1 GA Tourn./Arith 
% 1.38 % 3.43 53.3 102.1 PSO Bumping 

10 

% 2.30 % 4.02 103.8 163.4 PSO Amnesia 
% 1.41 % 2.29 427.5 1473.3 PSO Random 
% 2.49 % 3.34 88.1 190.4 PSO Penalty 
% 1.76 % 2.65 518.1 793 GA Roul./Basic 
% 1.79 % 3.37 507.2 680 GA Tourn./Basic 
% 1.96 % 3.12 454.5 1257 GA Roul./Arith 
% 1.76 % 3.66 550.8 808.8 GA Tourn./Arith 
% 2.5 % 5.27 52.1 119.1 PSO Bumping 

20 

% 2.31 % 6.77 96.8 320.6 PSO Amnesia 
% 2.4 % 4.99 272.7 1798.8 PSO Random 

% 3.26 % 6.29 65.4 299.6 PSO Penalty 
% 2.24 % 3.62 506.4 1239.6 GA Roul./Basic 
% 2.28 % 3.46 510.8 1078.4 GA Tourn./Basic 
% 2.05 % 5.72 272.6 1615.2 GA Roul./Arith 
% 2.78 % 4.6 365.8 1298.2 GA Tourn./Arith 

 
Table 3. Comparison of speed of PSO and GA algorithms 

( )st  itN   / ( )t it ms  Algorithm N  

2.9 86 34.2 PSO Bumping 

5 

4.8 142 33.9 PSO Amnesia 
54.5 1608 33.9 PSO Random 
7 202 34.5 PSO Penalty 
21.2 479 44.2 GA Roul./Basic 
28.7 657 43.7 GA Tourn./Basic 
69.7 1621 43 GA Roul./Arith 
46.8 1099 42.6 GA Tourn./Arith 
9.7 2.9 46.5 PSO Bumping 

10 

17.1 371 46 PSO Amnesia 
107.1 2328 46 PSO Random 
17.1 367 46.6 PSO Penalty 
127.3 1829 69.6 GA Roul./Basic 
117.2 1695 69.2 GA Tourn./Basic 
148 2166 68.3 GA Roul./Arith 
129.9 1910 68 GA Tourn./Arith 
15.8 223 70.8 PSO Bumping 

20 

36 514 70.1 PSO Amnesia 
165.1 2344 70.5 PSO Random 
30.6 430 71.2 PSO Penalty 
274.1 2253 121.6 GA Roul./Basic 
254.6 2100 121.3 GA Tourn./Basic 
259.3 2160 120 GA Roul./Arith 
243.7 2030 120.1 GA Tourn./Arith 
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Analysis of GA function in table 2 depicts 

that when we talk about number of iterations required 
for convergence, its function is worse than PSO 
process. The reason of this situation is that PSO is a 
more focused search process, while GA is a more 
random display. This random state in GA identifies a 
wider search space and this feature creates some 

solutions closer to the optimal value ( VaR ) for 
problems with more dimensions (optimization of 
portfolio with 20 assets). This fact reveals that GA is 
apparently less likely to converge to a local minimum 
compared with PSO; albeit, it excludes random 
positioning strategy. However, the function of 
random positioning strategy for PSO (particularly for 
more assets) seems worse than function of GA.  

 
4.3 Speed of Convergence 

The second test of this paper is measurement 
of the algorithm speed carried out by 50 particles / 
chromosomes and a portfolio including 5, 10, and 20 

sub sets. In this test, t  denotes the average time (sec) 

and /t it  is the average time of an iteration of the 
algorithm. Table 3 presents the results.  

As shown, for any size of portfolio, PSO has 
used less time for calculations in any iteration 
compared with GA. For portfolios with 5 assets, GA 
requires about 30% more time than PSO for any 
iteration. For portfolios with 10 assets, 45% more 
time, and for portfolios with 20 assets, 70% more 
time is required.  

 
5. Conclusion and Suggestions 

This paper demonstrated application of 
particles swarm optimization and genetic algorithms 
for portfolio management in a constraint portfolio 
optimization problem. The minimized objective 
function was the value at risk calculated by historical 
simulation. The results revealed that particle swarm 
optimization and genetic methods can significantly 
find proper solutions within a reasonable time. The 
particle swarm optimization algorithm was proved to 
be quicker than genetic algorithm in terms of both 
total time of implementation and number of 
iterations. This is justifiable by its more focused 
search.  

With respect to the strategies applied for 
particle swarm optimization algorithm, bumping 
strategy is the best one in terms of speed, and then 
the results of amnesia and penalty strategies are 
closed to it.  

Genetic algorithm, like particle swarm 
optimization algorithm, was proved to be able to find 
a good solution, yet it showed a worse state in terms 

of speed. Its less focused search (more non-random 
state) makes it less engaged in the local minimum; 
particularly if the population is not initially valued by 
chromosomes distributed in a probable space. The 
results of optimization by genetic algorithm reflected 
that basic crossover is better than arithmetic 
crossover for exploring the solution space. Also GA. 
Roulette/arithmetic strategy is to some extent better 
than other methods. On the other hand, GA. 
tournament/Basic strategy is the worst one.  

 
Suggestions 

For further research as regards behavior of 
population-based algorithms, it is suggested, 
 To assess the algorithms efficiency by 

considering some criteria for algorithms 
convergence. 

 To investigate more consistency for portfolio 
management when encountering different time 
horizons (or different constraints) by PSO or 
GA algorithms. 

 To compare consistency and speed of PSO and 
GA algorithms with each other in non-linear 
conditions. 

 
References 
1. DiTraglia, Francis J. Gerlach, Jeffrey R., (2013), 

Portfolio selection: An extreme value approach, 
Journal of Banking & Finance, Elsevier, vol. 37, 
pp. 305-323.  

2. Reboredo, Juan C., (2013), Modeling EU 
allowances and oil market interdependence, 
Implications for portfolio management, journal 
Energy Economics, Elsevier, vol. 36, pp. 471-
480. 

3. Huang, Wei & Liu, Qianqiu & Ghon Rhee, S. & 
Wu, Feng, (2012), "Extreme downside risk and 
expected stock returns, Journal of Banking & 
Finance, Elsevier, vol. 36(5), pp. 1492-1502.  

4. Alexander, G.J. Baptista, A.M., (2011), Portfolio 
selection with mental accounts and delegation, 
Journal of Banking & Finance, Elsevier, Vol. 
35(10), pp. 2637-2656. 

5. Das, S. Markowitz, H. Scheid, J. Statman, M., 
(2010), Portfolio Optimization with Mental 
Accounts, Journal of Financial and Quantitative 
Analysis, Cambridge University Press, Vol. 
45(02), pages 311-334, April. 

6. Chonghui, J. Yongkai, M. Yunbi, A. (2013), 
International portfolio selection with exchange 
rate risk: A behavioural portfolio theory 
perspective, Journal of Banking & Finance, Vol. 
37, Issue 2, pp. 648–659. 

7. Jiang, C. Ma, Y. An, Y., (2010), an analysis of 
portfolio selection with background risk, Journal 



 Life Science Journal 2014;11(1s)          http://www.lifesciencesite.com 

 

21 

of Banking & Finance, Elsevier, Vol. 34(12), pp. 
3055-3060. 

8. Baptista, A.M., (2012), Portfolio selection with 
mental accounts and background risk, Journal of 
Banking & Finance, Elsevier, Vol. 36(4), pp. 
968-980. 

9. Alexander, G.J. Baptista, A.M., (2010), Active 
portfolio management with benchmarking: A 
frontier based on alpha, Journal of Banking & 
Finance, Elsevier, Vol. 34(9), pp. 2185-2197. 

10. Mansoorian, A. Mohsin, M., (2013), Real asset 
returns, inflation and activity in a small, open, 
Cash-in-Advance economy, Journal of 
International Money and Finance, Elsevier, vol. 
32, pp. 234-250. 

11. Durham, G. Santhanakrishnan, M. (2012), Point-
Spread Wagering Markets' Analogue to Realized 
Return in Financial Markets, Greg Durham, 
College of Business, Montana State University, 
Bozeman, MT 59717, Vol. 13, pp. 554-566. 

12. GHATTASSI, I. (2013), Surplus Consumption 
Ratio and Expected Stock Returns, Working 
papers with number 417, Banque de France 31 
Rue Croix des Petits Champs LABOLOG – 49 – 
1404 75049, PARIS. 

13. Bonato, M. Caporin, M. Ranaldo, A., (2012), 
Risk spillovers in international equity portfolios, 
Swiss National Bank in its series Working 
Papers with number 2012-03. 

14. Holton, G.A., (2003), Value-at-risk: Theory and 
practice. Burlington, MA: Academic Press 
(Elsevier). 

15. Inui, K. Kijima, M., (2005), on the significance 
of expected shortfall as a coherent risk measure, 
Banking Finance, Vol. 29(4), pp. 853–864. 

16. Blanco, A. Delgado, M. Pegalajar, M.C., (2001), 
A real-coded genetic algorithm for training 
recurrent neural network, Neural Network, Vol. 
14(1), pp. 93–105. 

17. Mirzaei, Fuladgar, Fahimeh (2011), Particle 
Swarm Optimization Algorithm, Evolutionary 
Processing Course Seminar, Faculty of Power 
and Computer, Isfahan Industrial University. 

18. Goovaerts, M. Linders, Da. Van Weert, K. Tank, 
F., (2012), on the interplay between distortion- 
mean value- and Haezendonck-Goovaerts risk 
measures, Published in Insurance: Mathematics 
& Economics, Vol.51, pp.10-18. 

19. Ruodu W. Liang, P. Jingping, Y., (2013), 
Bounds for the sum of dependent risks and worst 
Value-at-Risk with monotone marginal densities, 
journal Finance and Stochastics, Springer, Vol. 
17, pp. 395-417. 

20. Bianconi, M. Yoshino, Joe A., (2013), Risk 
Factors and Value at Risk in Publicly Trades 
Companies of the Nonrenewable Energy Sector, 
Department of Economics, Tufts University in 
its series Discussion Papers Series, Department 
of Economics, Tufts University with number 
0773. 

21. Burchi, A., (2013), Capital requirements for 
market risks: Value-at-risk models and stressed-
VaR after the financial crisis, Emerald Group 
Publishing in its journal, Journal of Financial 
Regulation and Compliance, Vol. 21, pp. 284-
304. 

22. Mehmke, F. Cremers, H. Packham, N., (2012), 
Validierung von Konzepten zur Messung des 
Marktrisikos: Insbesondere des Value at Risk 
und des Expected Shortfall, Frankfurt School of 
Finance and Management in its series, Frankfurt 
School - Working Paper Series with number 192. 

23. Jijun, N. (2012), an empirical analysis of the 
relation between bank charter value and risk 
taking, Elsevier, The Quarterly Review of 
Economics and Finance, Vol. 52, pp. 298-304. 

24. Zapodeanu, D. Cociuba, M. Petria, N. (2012), 
The Role Of Value At Risk In The Management 
Of Asset And Liabilities, University of Oradea, 
Faculty of Economics in its journal The Journal 
of the Faculty of Economics – Economic, Vol. 1, 
pp. 635-640. 

25. So, M. Xu, R., (2013), Forecasting Intraday 
Volatility and Value-at-Risk with High-
Frequency Data, Springer, Asia-Pacific Financial 
Markets, Vol. 20, pp. 83-111. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 Life Science Journal 2014;11(1s)          http://www.lifesciencesite.com 

 

22 

Appendix  
Encoding VaR (objective function) by using historical simulation calculated in matlab. 

 
Codes related to the genetic algorithm 
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Codes related to the birds algorithm 
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