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Abstract: This paper aims at comparing particle swarm optimization (PSO) with genetic algorithm (GA) for
portfolio management in a constrained portfolio optimization problem in which short selling is not permitted. The
minimized objective function is value-at-risk calculated by using historical simulation. The tests results reveal that
these methods are able to calculate consistently the optimized solutions within a proper time. With respect to the
statistical calculations, it is concluded that these algorithms do not lead to a best solution identically. In terms of
time of implementation and number of iterations, particle swarm optimization seems to reach more swiftly to the
solution compared with genetic algorithm; and in terms of sensitivity to the initial position of the particles, particle
swarm optimization is more leading than genetic algorithm. Among other findings of this paper is that 50 particles
(chromosomes) are sufficient for problems with up to 20 assets.
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Introduction including value at risk theory. This paper seeks to
Portfolio refers to a set of assets invested by design an optimal portfolio which minimizes value at
an investor. A portfolio embraces technically a risk calculated by historical simulation based on
complete set of real and financial assets. Financial intelligent optimization methods and with regard to
assets include different types of securities like bonds, the constraints on the weights of the assets in the
ordinary stocks, preferred stocks, and financial portfolio. Intelligent optimization methods are very
derivatives (DiTraglia, F.J. and et al., 2013). Portfolio more quick and reliable compared with older
management is the most important matter for a methods (Huang, W., et al., 2012). One of the main
portfolio. Portfolio management constitutes the major issues raised in the capital market is selection of an
part and focal point of investment management optimal portfolio (with a minimum risk).
concept. Portfolio management embraces all The objective of the present paper is
dimensions of the portfolio and it includes managing portfolio by using value at risk and
combination of stocks existing in the portfolio, comparing genetic algorithm with particle swarm
weight of each stock in the portfolio, and the best optimization. The results obtained by this paper may
time for changing the combination. On the other be used by all natural and legal investors to improve
hand, the most important part of portfolio portfolio selection and reduce risks.
management is portfolio optimization which refers to
the selection of the best combination of financial 2. Literature Review
assets so as to maximize return on investment Here, a summary of several financial
portfolio and minimize portfolio risk as much as definitions and prerequisites used in this paper and
possible. In fact in portfolio optimization, selection of then studies carried out in this regard are presented.
the optimized assets and securities with a certain
amount of capital is the main matter. It must be noted 2.1 Theoretical Concepts
that a portfolio that includes several assets (Portfolio Asset: anything that produces profit is called
diversification) reduces risk in general (risk of an asset. In the economy, assets are divided into two
asset refers to a probable change in its future return) groups namely, financial assets (their physical aspect
(Reboredo, J.C., 2013). does not have value and they are regarded among
There are different methods for optimization securities) and real assets (their physical aspect has
in general and portfolio optimization in particular. value and they are tangible) (Alexander, G.J. et al.,
Many studies have been carried out in the recent 2011).
years regarding development of  portfolio Financial market: any network in which
optimization methods based on new theories goods and services are traded. The market does not
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have a physical concept and does not occupy a
specific space necessarily (Das, S. et al., 2010).

Stock Exchange: an official capital market in
which stocks of companies or bonds of government
or reliable private institutions are traded as per
specific rules and regulations (Chonghui, J. et al.,
2013).

Stock: a part of the assets of a company or a
factory. The stockholder is a partner in the ownership
of a manufacturing firm or company to the extent of
the held stocks (Jiang, C., et al., 2010).

Investment: passing up consumption in the
present to hope to consume more in the future
(Baptista, A. M., 2012).

Portfolio: a combination of
constituted for investments by an
(Alexander, G. J. et al., 2010).

Return on assets: taking benefit from an
asset; this paper applies three types of returns.

Simple periodic return => R, = (P, — P.;) / P,
1 , where P; denotes the price of asset at t time.

Continuously compounded return => r, =
In(1 + Ry) , where r; denotes natural logarithm of
simple return.

Portfolio return => Rn ; = ZoR;; (i =1, ...
n) , where TMdenotes portfolio, N is type of asset, i
represents weight of the related asset in the portfolio
®;, and ; is a percentage of portfolio value due to the
i-th asset (Mansoorian, A., et al., 2013).

Actualized return => a return that has been
actualized or obtained (Durham, G., et al., 2012).

Expected return => an estimated return of an
asset that investors expect to obtain in the future
(GHATTASSL 1., 2013).

Risk: the measurable potential loss is called
risk in which two variables namely loss and
uncertainty are involved (Bonato, M., et al., 2012).

Value at risk (VaR): X percent confidence
(1- a) in preserving currency V (value) in N (time)
days. The advantages of this method include its
applicability to stocks, bonds, goods, etc.,
applicability to financial instruments whose return
distribution is normal or abnormal, being a
framework for risk measurement and analysis,
preventing lateral calculations, and having a leading
approach towards risk measurement (Holton, G. A.,
2003).

assets
mvestor

Conditional value at risk (CVaR): loss
prediction under unfavorable conditions. At
confidence level 1 - o, it equals CVaR.) = -E[X | X
< -VaR(.q], where X denotes real-valued random
variable, fx (x) is the probability density function and
Xq = VaR(.y (Inui, K., et al., 2005).

Genetic algorithm: it is based on Darwin's
evolutionary theory and the solutions of problems
solved through genetic algorithm improve gradually.
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This algorithm starts from a set of solutions
(chromosomes / population). In this method,
solutions obtained from one population are used for
producing next population. Selection of some
solutions (parents) for creating new solutions (off
springs) is based on fitness value (Blanco, A., et al.,
2001).

PSO algorithm: it presents a set of solutions
(with learning feature) which is called particle (like
chromosome). In portfolio, total weights of assets
constitute a particle. Each particle in PSO has a
position in the search space. The position of each
particle is determined based on the experience of the
particle and its neighbors. In each PSO, two simple
behaviors are modeled namely, movement of each
particle towards the best and nearest neighbor, and
return of each particle to a state that has been better
for it earlier (Mirzaei, et al., 2011).

2.2 Research Background

The studies related to the subject of this
paper are presented in the following.

(Goovaerts, M. and et. al, 2012), in the
actuarial research, distortion, mean value and
Haezendonck—Goovaerts risk measures are concepts
that are usually treated separately. (Ruodu, W. et. al,
2013), provide a new lower bound for any given
marginal distributions and give a necessary and
sufficient condition for the sharpness of this new
bound. For the sum of dependent risks with an
identical distribution, which has either a monotone
density or a tail-monotone density, the explicit values
of the worst Value-at-Risk and bounds on the
distribution of the total risk are obtained. (Bianconi,
M. et. al, 2013), We analyze a sample of 64 oil and
gas companies of the nonrenewable energy sector
from 26 countries using daily observations on return
on stock from July 15, 2003 to August 14, 2012. A
panel model with fixed effects and Tarch effects
shows significant prices for specific risk factors
including company size and debt-to-equity and
significant prices for common risk factors including
the U.S. Dow Jones market excess return, the Vix,
the WTI price of crude oil, and the FX of the euro,
Chinese yuan, Brazilian real, Japanese yen, and
British pound vis-a-vis the U.S. dollar. (Burchi, A.,
2013), This paper aims to investigate the effects of
different models to estimate the market risk in the
management of the trading book. The study takes into
account the events occurring in the financial markets

and the new prudential rules.
Design/methodology/approach  —  The  author
compares different models and proposes an

opportunity cost function able to evaluate the cost
related to capital requirements. This paper presents
several state of the art methods to evaluate the
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adequacy of almost any given market risk model.
Existing models are enhanced by in-depth analysis
and simulations of statistical properties revealing
some previously unknown effects, most notably
inconsistent behavior of alpha and beta errors.
Furthermore, some new market risk validation
models are introduced. This paper examines the
relation between bank charter value and risk taking.
Using a sample of U.S. banks over the period 1990—
2006, we find that the relation is U-shaped: as charter
value increases, risk taking first decreases and then
increases. This finding is robust across alternative
measures of risk taking and an estimation method
that accounts for the joint determination of charter
value and risk taking. (Zapodeanu, D. et. al, 2012), In
the Value at Risk methodology the estimation models
are classified as: parametric, nonparametric, semi-
parametric; they present the parametric models
(GARCH models) used in Value at Risk and the
connections that can be established between ALM
models and Value at Risk. We present the
Conditional Value-at-risk and offer and example on
how to calculate CVaR. (So, M. et. al, 2013), In this
paper, we develop modeling tools to forecast Value-
at-Risk and volatility with investment horizons of
less than one day. We quantify the market risk based
on the study at a 30-min time horizon using modified
GARCH models. The evaluation of intraday market
risk can be useful to market participants (day traders
and market makers) involved in frequent trading. As
expected, the volatility features a significant intraday
seasonality, which motivates us to include the
intraday seasonal indexes in the GARCH models.

3. Research Methodology

For the empirical part of this paper, data
pertaining to active market of Stock Exchange in
America for 30 stocks (companies) from 5 January
1987 to 30 May 2006 has been used. In sum, 4896
data points were obtained. Using above data,
computational model of the return logarithm was
determined as 1k = log (pik / P @-1x)- As per the
research literature, objective function N is variable
and its mathematical model equals,
minml ... on (VaR)a
s.t.
Yo;=1(@{=1..n)
Vi:0<w; <1

The main objective of this paper is solving
the problem by two PSO and GA algorithms and
comparing their functions in reaching the solution. So
the problem assumptions are as per below.

a. Initial value of particles / chromosomes in
algorithms
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Chromosomes and particles must be initially
valued, because the optimal zone in the probable
space is not known in advance. To implement valuing
process, below steps are passed through.

v' Creating the vector § = [1,2,..N] where N is the

number of assets in the problem.
v' Creating a random permutation of vectors s
and &'

v Producing sequence weights determined by s
v" Normalizing weights determined for
maximizing up to one

b. Size of algorithms population in the model

In PSO algorithm, size of population refers
to the number of particles. The more the number of
particles in the population is, the more the initial
divergence of the population will be. As the
population gets larger, in each round of PSO
algorithm ring, more search space is covered and
computational sophistication is also increased and
searches are converted into parallel random search.
Compared with low particles, as the number of
particles gets more, we will reach solution in fewer
rings. In this paper 30 particles are not sufficient.
Thus for most experiments carried out here,
population size has been selected 50.

c. Algorithms parameters in the model

To use the related algorithms for solving the
optimization problem, it is necessary to specify their
parameters experimentally. Thus below values have
been selected for PSO.

Omax = 0.9 Omin = 0.4
C; =05 C,=0.5
p1=0.9 P,=09

Genetic algorithm has two parameters as below.

v Calculating probability of a combination in two
selected chromosomes

v Calculating probability of a mutation in the
offspring (two solutions)

Occurrence probability of a combination is
assumed 0.8 (or 80%) and probability of a mutation
is assumed 0.01 (or 1%). Confidence level for VaR
and CVaR has been considered 95%. Tests of this
paper cover two goals namely, ability of finding the
optimal solution and speed of convergence. To
realize ability of finding optimal solution, below
parameters have been considered.

v The average number of iterations required for an
algorithm (V)
v" Standard deviation of the number of iterations

(o)
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v' The mean error between the best solution found
by an algorithm in each implementation and the
best solution found in all implementations
(évar)

v' Standard deviation of error &5z (oz)

Two late items depict that how much the
algorithm is proper for finding the optimal solution in
the problem. To investigate convergence speed, each
algorithm has been considered 5 times for each of the
5 sub sets (random selection), implementation and
average of time of each iteration are calculated.
Parameters are defined as per below.

v' Time of each iteration [ t/it}

v' Average time of each iteration (t/if)

v' Average time required for convergence of each
algorithm ()

To know how long it does take for an
algorithm to converge, below assumptions are
regarded.

— If the algorithm is iterated N';, = Nz + 20y
times, by 0.1% approximation it reaches the best
solution found in 97.7% times of a specific
implementation.

— The main assumption is that N has an
approximate normal distribution. The test has
been carried out via matlab 7. The codes applied
in the software have been mentioned in the
appendix.

4. Research Findings
4.1 Risk Values

To show the effect of selecting different
horizons for inputs, portfolios with 5 assets (stocks of
M3, Citigroup, Coca Cola, General Motors, and
Microsoft) have been optimized for different risks
size. Sizes of risks are namely variance, VaR
calculated by historical simulation, and CVaR
calculated by historical simulation. Figure 1 to 3 and
table 1 presents weights of optimal portfolio by using
different objective functions and different time
horizons for data. In the figures, Y-axis shows the
weights and X-axis shows the time (year).
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With regard to the size of applied risk,
combination of a portfolio may vary highly. For
example, this situation can be seen as regards Coca
Cola stocks in the portfolio generated by data of 5
years (a five-year horizon). By this horizon, the
weight of Coca Cola stocks equals 50.1% in a
portfolio that minimizes the variance, equals 69.7%
by VaR minimization and 35.6% by CVaR
minimization.

Table 1. Variance, VaR, and CVaR minimization of
portfolio returns

Minimization Variance VaR CVaR
Variance - %5.56 %0.12
VaR %0.77 - %0.49
CVaR %0.09 %5.09 -

Different risks size of portfolios with 5
identical assets that are optimized by VaR, CVaR,
and variance minimization are compared. Then these
portfolios are measured by different metrics.
Minimization reveals that the objective function has
been minimized. Variance, VaR, and CVaR shows
standard deviation of a portfolio that has minimized
these criteria.

4.2 Ability to Find the Optimal Solution

Ability to generate the optimal solution by
these algorithms to optimize the problem with 50
particles / chromosomes and with portfolio including
5, 10, and 20 sub sets was tested and the results are
presented in table 2. With regard to the executive
model of the research, strategies that have been used
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in calculations are namely PSO (Bumping, Amnesia, Tourn./Basic, Roul./Arith, Tourn./Arith) , and genetic
Random, Penalty) and GA  (Roul./Basic, algorithm has been calculated for 5-item sub sets.
Table 2. Minimization of variance, VaR, and CVaR of portfolio returns
Na Algorithm N, Oy EVaR o,
PSO Bumping 44 21 % 0.58 % 0.79
PSO Amnesia 79.7 31 % 0.55 % 0.73
PSO Random 562.7 522.6 % 0.37 % 0.6
5 PSO Penalty 93.8 54.1 % 0.37 % 0.69
GA Roul./Basic 142 168.7 % 0.52 % 0.72
GA Tourn./Basic 172.6 242.1 % 0.6 % 0.78
GA Roul./Arith 472.6 574.2 % 0.91 % 1.06
GA Tourn./Arith 269.1 415 % 1.02 % 1.02
PSO Bumping 102.1 533 % 3.43 % 1.38
PSO Amnesia 163.4 103.8 % 4.02 % 2.30
PSO Random 1473.3 427.5 % 2.29 % 1.41
10 PSO Penalty 190.4 88.1 % 3.34 % 2.49
GA Roul./Basic 793 518.1 % 2.65 % 1.76
GA Tourn./Basic 680 507.2 % 3.37 % 1.79
GA Roul./Arith 1257 454.5 % 3.12 % 1.96
GA Tourn./Arith 808.8 550.8 % 3.66 % 1.76
PSO Bumping 119.1 52.1 % 5.27 % 2.5
PSO Amnesia 320.6 96.8 % 6.77 % 231
PSO Random 1798.8 272.7 % 4.99 % 2.4
20 PSO Penalty 299.6 65.4 % 6.29 % 3.26
GA Roul./Basic 1239.6 506.4 % 3.62 % 2.24
GA Tourn./Basic 1078.4 510.8 % 3.46 % 2.28
GA Roul./Arith 1615.2 272.6 % 5.72 % 2.05
GA Tourn./Arith 1298.2 365.8 % 4.6 % 2.78

Table 3. Comparison of speed of PSO and GA algorithms

Na Algorithm t/ it(ms) Ni’t L(s)
PSO Bumping 34.2 86 2.9
PSO Amnesia 33.9 142 4.8
PSO Random 33.9 1608 54.5
PSO Penalty 34.5 202 7

S GA Roul./Basic 44.2 479 21.2
GA Tourn./Basic 43.7 657 28.7
GA Roul./Arith 43 1621 69.7
GA Tourn./Arith 42.6 1099 46.8
PSO Bumping 46.5 2.9 9.7
PSO Amnesia 46 371 17.1
PSO Random 46 2328 107.1

10 PSO Penalty 46.6 367 17.1
GA Roul./Basic 69.6 1829 127.3
GA Tourn./Basic 69.2 1695 117.2
GA Roul./Arith 68.3 2166 148
GA Tourn./Arith 68 1910 129.9
PSO Bumping 70.8 223 15.8
PSO Amnesia 70.1 514 36
PSO Random 70.5 2344 165.1

20 PSO Penalty 71.2 430 30.6
GA Roul./Basic 121.6 2253 274.1
GA Tourn./Basic 121.3 2100 254.6
GA Roul./Arith 120 2160 259.3
GA Tourn./Arith 120.1 2030 243.7

19



Life Science Journal 2014;11(1s)

http://www.lifesciencesite.com

Analysis of GA function in table 2 depicts
that when we talk about number of iterations required
for convergence, its function is worse than PSO
process. The reason of this situation is that PSO is a
more focused search process, while GA is a more
random display. This random state in GA identifies a
wider search space and this feature creates some

solutions closer to the optimal value ( €VeR ) for
problems with more dimensions (optimization of
portfolio with 20 assets). This fact reveals that GA is
apparently less likely to converge to a local minimum
compared with PSO; albeit, it excludes random
positioning strategy. However, the function of
random positioning strategy for PSO (particularly for
more assets) seems worse than function of GA.

4.3 Speed of Convergence

The second test of this paper is measurement
of the algorithm speed carried out by 50 particles /
chromosomes and a portfolio including 5, 10, and 20

sub sets. In this test, £ denotes the average time (sec)

and ¢/ it is the average time of an iteration of the
algorithm. Table 3 presents the results.

As shown, for any size of portfolio, PSO has
used less time for calculations in any iteration
compared with GA. For portfolios with 5 assets, GA
requires about 30% more time than PSO for any
iteration. For portfolios with 10 assets, 45% more
time, and for portfolios with 20 assets, 70% more
time is required.

5. Conclusion and Suggestions

This paper demonstrated application of
particles swarm optimization and genetic algorithms
for portfolio management in a constraint portfolio
optimization problem. The minimized objective
function was the value at risk calculated by historical
simulation. The results revealed that particle swarm
optimization and genetic methods can significantly
find proper solutions within a reasonable time. The
particle swarm optimization algorithm was proved to
be quicker than genetic algorithm in terms of both
total time of implementation and number of
iterations. This is justifiable by its more focused
search.

With respect to the strategies applied for
particle swarm optimization algorithm, bumping
strategy is the best one in terms of speed, and then
the results of amnesia and penalty strategies are
closed to it.

Genetic algorithm, like particle swarm
optimization algorithm, was proved to be able to find
a good solution, yet it showed a worse state in terms
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of speed. Its less focused search (more non-random
state) makes it less engaged in the local minimum;
particularly if the population is not initially valued by
chromosomes distributed in a probable space. The
results of optimization by genetic algorithm reflected
that basic crossover is better than arithmetic
crossover for exploring the solution space. Also GA.
Roulette/arithmetic strategy is to some extent better
than other methods. On the other hand, GA.
tournament/Basic strategy is the worst one.

Suggestions
For further research as regards behavior of
population-based algorithms, it is suggested,

— To assess the algorithms efficiency by
considering some criteria for algorithms
convergence.

— To investigate more consistency for portfolio
management when encountering different time
horizons (or different constraints) by PSO or
GA algorithms.

—  To compare consistency and speed of PSO and
GA algorithms with each other in non-linear
conditions.
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Appendix
Encoding VaR (objective function) by using historical simulation calculated in matlab.

1| %% Object function

2| function VaR=objectfunction (w)%w bordare wazn

3| load dadeha.txt;

4| [t ,N]=size (dadeha);

5| r=zeros(t—1,N);

6

7| for j=1:N

8 for i=2:t

9 r(i—1,j)=log(dadeha(i,j)/dadeha(i—1.j));

10 end

11| end

12 for i=1:t—1

13 for j=1:N

14 E(i,j)=exp(r(i,j));

15 end

16| end

17| for j=I1:N

18 whtz,j)=w(i) - *B(:,1);

19| end
20| for i=l1l:t—1
21 R(i)=log(sum(wt(i,:)));
22| end
23| ee=zeros(1l.,t—1);
24| ee(5)=1;
25| VaR=—ee*(sort(R)) ’;
26| end

Codes related to the genetic algorithm

1| function war_ga

2| s=input | 's=—Il=Roulette selection ,s=—3—towurnament selection ®);
3| d=input | 'd I=crossaver Basic ,d=—2=crossover arithmetic’);
4| g=input{ 'inter q: g bar i adade tasadofi tolid mishavad:');
3

6| p=input | "inter p:matrishaye entekhabi bar asase adade tasadofi p bar ejra mishavand: ") ;
T| mazit=input( "inter tedade tekrar ™)

8] c=_049;

9| p=zeros {1 ,.p);

10| nn=zeros(1,q];
11| VR=geros(1.,p] ;
12| TT= zeros({1.,q];
13| pn=weros(1,q]) ;
14| VER=zero={1 .p];
15| vv=zeros(1,q];

16| Evar=seros(1,q] ;

17| vV—=eraos(1 ,p);

18] for k=1:q

19 ¥ =1z

M while i-=35

21| r=unique [randi (10,5 1)) ;

X |i,j]=size(r];

23| end

24| load dadeha . txi%iek malrise 500 0 madrise dadehaies asli ia avalie)

25| data=|dadeha {: ,r (1)) dadeha(:, r(2})] dadeha(:,r(3)]) dadeha{:-,r(4)] dadeba{:,r(3)]];

M| [t Nl=size [dadeha] ;

-

e

¥| for j=1N

et for i=2:t

) ri{i—1,jl=log{dadeha(i,j)/dadeha{i—1,)];
5| end

12 end

K| for i=1:t-—1

34 for j=1:M

a5 Eli . jl=exp(c{i,jl);

6 end

17| end

H| global E;

| global MN;

Al global &

11| global «c;

12| for i=1:p

43| options gaoptimset (" fitnesslimit ",—inf);
44| if =1

15| options gaoptimset {options | 'SelectionFon 7, fiselectionroulette ) ;
16| % RHowuletie selection

AT enad

48] if d—1

22
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Yolicrossoversinglepoint ) ;

48] options=gacptimast (options | ' CrossoverPen
50| Herossoversinglepoint 4 crvossover Hasbe
A1) e

52| aptions = gaoplimaet [options | 'SelectionFen ' { Oaelectiontonrnament 2} ;
53| ¥Tlonwmament selection chocses each parent by checsing Towmament size

B Bplayeras ol random and then choosdng the best dndividuval oud af that ael

BE| ®ea be a parent. Touwrnamend sdze mual be al least &
56| Il = merosi(N, 1) ;

aT)

58

Salub = onea{N 1) ;

=]

Bl| Hjakeal ba wavesh jalkesh ba laghieer meghdar

B2 sptions = gaoptimast (options |, " Crosdover Fraction' 0.6); B5The fractton aof the
B3| options=gaoptimaet (options | "TalFun'  1e—50);

Ed| Hpopulatian at the neést generatton , nat ineluding elite ehildren , that 4
65| Berealed by fhe ercesover funciion

G| aptiona = gaoplimaet [options | 'Generations ' maxit) ; Fiek sharte tavaghof
Tloptions = gacsptimsst (options | ' MigrationFraction' [ 2] ;
Bl aptions = gaoptimset (options | " PopulationSiz " 50); FPopulalion sdze (PopulationSize )

BB Hipectfies hon mang individwals there are in each genedratton. Fandazeite jamial dar har nasl
hrabare S50 astl.

| aptions = gaoplimast (options |, "PlotFens ' | Ogaplothest! | Bgaplotbestindiv |, Dgaplotanares |
Bgaplotdisgtancs |, Dgaplotrange  Agaplotaslection }, 'Disgplay ', "iter '),
T1| asgq=ones(1 M) ;

T2 beg=1;

T3 [w,Vakt, ecicflag , output, population, scores || = gal{@objecelfunceion (M, [, [] ,aeq, by lb b [],
optiong);

Td| atream = HandStream . get Defanlt 5t ream ;

Th| atream . State = output .rogatate  atate;

7| aption: = gaoptimaet{options , 'Titnesalimit ' Vali+.01);

T tie;

TE| [w, ¥ah2, exitflag ,output , population ,geores| = gal{SGobjectlanction M, [, [] ,aeq ,beg lb ub [],
optiong];

78] T=toc;

0| MMN=ontput . generations +100;

81 m (1=

s VR =Valtz;

Ei| e

| T b y=smnaf T/

B85 nnik)=mmmin)
=11 J.I.=I.I.1L|:k;| i
-l for i=lip

B8 v(i)=sgqre (((n(i]-h]72)/p);

50 VEEL( L J=sqrt ({[VIL] | j—maeeVEL) ) ™21/ p) ;
onl  end

81| Evar ( k)=suon] VR ¢

82 e

93| avarageEvar=am| Evar) fq
94| avarageT=amn|TT) /g

oh| avaragen=suminon)] /g

6| avaragevarianee=monmiv) q

| funetion s=objecelunetion(=)

99| glabal E;

100] glabal M;

1] global

2] glabal «;

| for j=1:M

04 wt(:, jew(j) B0 0
wEl ened

WG] For §=1:1-1

107
10E fii)=log(mm{=t{i, :]11];
108 End

110
111] ee=maros(l,ct—1);
112] ee[5) =1;

13| z=ee*|{sort[R)) ';

23
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B3 =

-

13

fih

Codes related to the birds algorithm

Function war  peo
Mulfh-l:u.-ru.t.iuu:ﬁnputl' ‘tedade tekrar');
g=input ("inker g q bar 5 adade tasadofi eolid mishavad:
]:-—lnpru‘tl_ inter p:malrizhaye entekhald bar agase adade 1..u=*.ur|.-.!l'1 p bar ejra mizhavand:');
maxit =MaxGener ation ;
for k=1:q

=1;
while i-=5
r=unique randi (10,5,1));
|i,j]=sise(t);

load dadehs txt®iek maoirizge 500 * f0/malrize dodebade asdi ic avalie)

deba{:, (1)) dadeba(:, e({2)] dadeba(: c{3)) dadebha(:, c({4))] dadeba(: c{5]]];
[t M=size (data);

r=zeros(t—1.N]);

data =[da

for j=1:N

for §=2:t
e(i—=1,j1=log(data{i,j) /datali—-1,j)1;

e

e |

for i=1Lt-1
for j=1:N

J::[j 1 j Imlrlj |jll !I;

i

el

Wrr=meraos(l ,pl;

Vil=seros({1, ) ;

glaobal E;

glabal M,

global t;

global «;

npop=50; Fpopulation size

nvar=10; ¥nomber of vartable

wimax=.5; ¥paramelrhaic dade shode dar safeie 775 maghaleie latin

"wu.uu—:lﬁfj arameirhaie daode shode dar safeie 775 maghaleie latlin

be afraieahe soral
e2=5;%zaribe afzaieshe soral

wrnin=0; %/ rmin , crac | damanete javabe behine
zrnax =1;

ving =, 1; ¥marimem soral e mejoz braie zaral, safeie (6,17 poo;

empty_ particle. pozition
smpty  particle, veloeity
smpty_ particle, thI.-I_LllLrLLLiul:I. =[];
emply_particle. pheat =]];

emply _particle. pheatabjestfunation =[];

particle=repmat{empty_particle npop, 1) ;%¥tolide 50 zare ke har zare az 5 bordare mohgeial
zare, sorale zare,behtarin moghetate zare lashkil shode.

ghest=weros] maxit, nvar ) Fmatriie beldarin moghetate lamame zaral Jdar lamame tekrarha da dar
hameie abod,

ghestobjectfunetion=seros {maxit 1) ;
for ii=l:p
tic
for it=1lmazit
if ig=—=1
ghestobjectfinetion {1)=inf ; ¥meghdare tabehadaf avalic be czaie ghest
for i=lmpop
pacticle (i).velocity=seros(l, ovar | ; Fordare sorale zareie jom
particle (i). pezition=xmin+{xmax—xmin] *rand {1 ovar); Fmohasebeie moghedale zaredie
B
particle (i), objectfunction=objectfunceion { particle (i), position fam parcicle (i),
position )}, % meghdare fabehadaf be ezaie mogheiate zareie fom fani: [
particlef i), position)

24
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i particle (1), pbest=particle (1], position ; Fmobasebeie bellarin mogheiate zareie
wom ta tekrare  oom

67| particle(i). phestobjectfunceion=particle(i). objectfunction; Bmeghdare tabbadaf be ezaie
phest fani: fiparticle (). pbest)

k]

£0) if particla{i).pbestobjectfunction<ghestobjectfunetion (it )

70 ghast{it : J=particla(i). phest;

Tl ghestobjee cfunction( it j=particlei). phestobjectfunction

72 wned

T3 el

T4 ]

Tk gheat{it ,: J=gbest{it —1 ,:];

TE ghestobjectfunction]it J=gbestabjectfune tion (it —1];

v for i=Lnpopfmohasebete sorat, mogheial,behlarin mogheial zarat dar tekrare jadid

TH partiele (i), velocity=w* parcicle (i), veloeicy ...

bi: +el*mnd* {pareiclefi). phest—particle (1), posicion ). ..

El +o2*rand * [gheat (it |, )—particle (i) . poaition );

A1

B2 partiele (1. velocity =min(max) particle (1], velocity ,—vmax | woe ] ; Fbaraie
kontorole soral ke zare az fazade mohlamel kharej nashavad.

B3

B4 varbliele (i), position=partiela(i). position+particle(i). veloeity ; BEmohaseh ete
particlefi). position jodid

&5

EE) partiele (1], position=min{masx) particle (1], pogition xmin] xmax ] ;

-1y

BB particle (i), objecefunction=objectlfunction { particle (i), position fam( pareicle(i].
position ));

40

an if particle(di).objectfunction <particle(i) . pheatobjectfunetion

a1 particle (i), phest=particle(i) . poaition ;

B2 particle (i), pbestobjectfunction=particla {i].objectfunction;

o3

o4 if particledi). phbestobjec tfunceion<ghbestobjee efune tlon (it )

a5 ghescit : )=particlei). pbest;

a6 gheatobjectfunction [ it J=particle[i).pbestobjectfunction ;

aT el

L] e

LI end

100

il

102 el

103

104 Bow=w i Smoazid ;K kaheah w be sorale Ehali ba raribe Eaheahi wdamp

105 weewri— ((wtax—wmin ] * it ] Smacit ;B ozardbe enerB ;i safeie 7T maghaleie ladine asli

106] end

107| T L =toe;

06| for j=1:mazic

Wa|We(j, ) =gbeat(],:]) Semm| ghest (j ,:01)
Mo vrf jil=objectfunetion (WS j,:0 )

111] end

112 I'T =1;

113] for jj =1l:mazit

114 if (we{mazie)+. 00 ={ve{jj))
115 IT=§] i

116 bresk

117 e

115] end

Nelp{ii)=T; Fredade lekrar baraye residan b bazeye K1 javad behine

120) vee (il )=vri{mazit);

121] el

22| TT k)=amn(T) /p; ¥micngine zamane residan b bazege B jovad behine dar p tekrar
Z3|nnfk)l=amin) /p; ¥Fmicngine fedade (ekrar baraye residan b bozege ¥ jovad behine dor p

tekrar
124| b=nnlk]) ;
125
126 for i=Lp
127 vii=sgrt (((n(i)=L)"2)/p);
128 VRR(i)=sqrt | ([(vee(di)—mx(ver)) 720/ p);
120 end
140 end

131 avirag e Evar=sum VI g
132| avara geT=on(TT) fq Fmiengine samane resbdan b bazeye B javad behine baraye § mailrise ijad
ghode Aar Bodom polebrar
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133

134

135
LiE
137
138
138
1400
141
142
143
144
45
HE
147
148
148
150
151

avarapen=smninn] Sq Fmiangine ledade
matrise fjad shode har kodam p lekrar

RVRrAEevariane e=sumi v ) q Hm tanigimenartanee fedade
e P lekrar

Function s=oabjectlunecion (w)
global E;
global N
global 1t;
global ¢
For j=1:k
wtl:, J=w{])."E(:,

encl
for i=Lt-—1

Rii)=log[mum{wt (i, :)]));
el

ea=weras (1l t=1];
ee (8] =1;

=t gort (H))

fekrar barape reaidan

b bhaze e & _1 atab dehine ba raye

tekrare restdan b bazeye B javad behine

1/6/2014
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