
Life Science Journal 2014;11(1)                                                        http://www.lifesciencesite.com 

http://www.lifesciencesite.com                          lifesciencej@gmail.com  308

Comparison of Two Main Parametric Methods in Multi-Portfolio Optimization 
 

Younes Elahi, Mohd Ismail Abd Aziz 
 

Department of Mathematics, Faculty of Science, University Teknology Malaysia, Johor Baharu 81310, Malaysia 
elahi.math@gmail.com 

 
Abstract: There are many applications for Multi-portfolio optimization in finance, management, engineering and 
etc. The main problem in this area is to find out the optimal method to distribute a given funds on a set of existing 
assets. Two methods of multi-portfolio optimization methods were proposed recently: weighted sum method and ε-
constraint method. The former is based on weighting, by positive coefficients. The second method considers the one 
of the objective functions and let others be the constraints. It is found that unlike the weighting method, the scaling 
of the objective functions is not necessary in the e-constrained method. Finally, some results and discussion are 
provided in the concluding section. The results compare two main parametric methods of multi-portfolio 
optimization. 
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1. Introduction 

In finance, a portfolio is a set of assets that 
can make one compound from several positions in 
investing. The main problem in this area is to find out 
the optimal method to distribute a given fund on a set 
of existing assets. Maximization of expected return 
and minimization of risk are two main aims of this 
problem. The user’s risk aversion has a direct effect 
on the optimal solution. Two criteria are necessary 
for optimization of the portfolio. The first criterion is 
the set of solution to the portfolio optimization 
problem called ‘‘efficient frontier” or ‘‘Pareto-
optimal front”. The second one is the measurement 
against the risk of the portfolio. It is a norm that a 
financial institution wanted to present its customers 
different position to choose in relation to their risk 
aversion (Mavrotas, 2009) (Lozza et al., 2011).  

The outline of this paper is as follows. In 
Section 2, it presents some primary concepts that are 
needed. In Section 3, the weighted sum method as 
one of the parametric portfolio optimization based on 
literature was studied. Next, the ε-constraint method 
was discussed. Section 5 concludes the paper with the 
comparison and discussion. 

 
2. Primaries of Portfolio Optimization  
 There are many applications for Multi-
objective Optimization (MO). However, some time it 
is very hard to find the solution of the MO. On the 
other hand, finding out the all Pareto optimal solution 
is costly and consumes much time. Furthermore, in 
some cases the MO problem has an unlimited set of 
Pareto (Chinchuluun and Pardalos, 2007) (Elahi and 
Abd Aziz, 2011).  

From the theoretical aspect, every Pareto 
optimal solution is equally satisfying as the solution 

to the MO problem. However, from a practical point 
of view, only one reasonable solution must be chosen 
finally. A decision maker (DM) is a person who can 
select a good point out of the set of Pareto optimal 
solutions. A DM has understanding about a set of 
Pareto optimal solution and can find it from several 
solutions (Yang et al., 2011, Grodzevich and 
Romanko, 2006). Generally a MO problem is as the 
following mathematical model 
 

  (1) 

subject to , 
 

where , . Note that  
is a vector-valued objective function. For example in 
the integer programming cases, it is assumed that f 
and g are linear functions and MO problem with 
integer program is as the following  
 
  (2) 

Subject to  

. 
 

The feasible set in decision problem can be 
represented by 

 
or  

and the feasible set for objective problem can be 
denoted by 

. 

A feasible solution  is called efficient if it 
satisfies two following conditions:  

There is no  with  and 

. 
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 So, the image of the efficient set in MO 
space is equal to one set that is non-dominated point 

 (Ehrgott, 2009) (Elahi and Mohd-
Ismail, 2012) (Wang and Wu, 2011).  

The purpose of Pareto optimality is to find 
out the best set of solution for MO Problem. This 
objective vector is such that none of the components 
of each of those vectors can be better without 
deterioration to at least one of the other components 
of the vector. Thus, the mathematical view of the 
Pareto optimality can be as follows: 

Portfolio optimization was introduced by 
Markowitz (1952) via a framework of return / 
variance risk (Yu, 2012).  

Nowadays, most problems of optimization 
use multi-objective model (Eichfelder, 2009). 
Usually the problem of portfolio optimization 

includes  securities, a preliminary sum to be 
invested, an opening of a holding time and an end of 
the holding period (Steuer et al., 2006).  
 
3. Weighted Sum Method  

This method was introduced by Zadeh and it 
is one of the main ways of solving the Multi 
objectives (Chinchuluun and Pardalos, 2007) (Zadeh 
and Desoer, 1963). There are three types of this 
method used for multi-portfolio optimization (MPO) 
in previous research. They are weighted sum method, 
weight quadratic method and weight quadratic 
variation.  

One of the main ways of weighting methods 
is the weighted sum method. The aim of weighting 
method is the optimization of the objective functions 
that they are arranged by linear combination 
(weighted sum). Different efficient solutions can be 
found by changing the weights of the objective 
functions (Kirytopoulos et al., 2010). However, Insert 
the values of weighted coefficients can be wrapped. 
In fact, the difficulty is to determinate the weighted 
in regards to each objective function. There is a 
relation between weights and its corresponding 
objective function (Grodzevich and Romanko, 2006).  

The weighted sum method changes the MO 
problem with a single model of mathematical 
optimization problem. In this method, sum weighting 

coefficient  multiplied each objective function  
to make the structure of the objective function as the 
following: (note that normalization for those 
coefficients is not necessary) 

 

 (3) 

 
  

 . 

With convexity supposition, if  

 then the solution of the above system is 
Pareto optimal. This means that if the system is 
convex, then any Pareto optimal solution can be 
found (Grodzevich and Romanko, 2006). There are 
three criteria to measure the weight. They are 
subjective preference of the decision-makers, the 
variance measure and the independence of criteria. 
Usually two methods can be used to achieve this aim: 
the equal weights and the rank-order weights (Wang 
et al., 2009, Jia, 1997) (Sawik, 2009). 
 Furthermore, adaptive weighted sum (AWS) 
method by Kim and Weck is presented in this 
section. This method considers m-dimensional 
problems with some constraints which allow us to 
find the Pareto optimal set.  
 They extended the bi-objective method to 
AWS method for solving the problems with which 
they are multi-objective functions. To achieve this 
aim, the current weighted sum method is used to 
approximate the Pareto optimal set, and identified the 
situation of the Pareto front patches which they are 
used to refined imposing additional equality 
constraints to find the m-dimensional objective space 
(Kim and Viens, 2012). 
 
4. ε-constraint Method 

Let MO problem be as the following: 

  (4) 

S.t.  
Where the vector of decision variables is 

shown by , and  are objective 

functions and the feasible region is denoted by . In 
this method, we consider one of the objective 
functions to the optimization and constraints of this 
system are other objective functions as the following 

 

  (5) 

 

 

 

 

St  
 
The efficient solutions of the problem above 

come from parametric variation method (Cohon, 
1978, Mavrotas, 2009) (Kirytopoulos et al., 2010, 
Cohon, 1978, Miettinen, 1999). Generation of the 
complete (continuous) efficient frontier is related to 
convexity of the portfolio selection. If the portfolio 
problem is convex, then the solution can be obtained 
by the critical line algorithm. On the other hand, in 
non-convex cases, usually that is based on the ε-
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constraint method.  
Obviously, this method helps to generate the 

single solution and there are some algorithms (e.g. 
Evolutionary algorithms) that can be simulated for 
multiple objectives to generate the approximation of 
the efficient frontier (Mavrotas, 2009) (Miettinen, 
1999). The families of ε-constraint formulations are 
considered as the multiple criteria optimization 
problem to generate this method. 

According to the constraints of objective 

functions, the ranges of them at least of the  
objective functions can be determined in the ε-
constraint method. Next, with the slack variable the 
objective function constraints change to equalities. 
On the other hand, the sum of these slack variables 
uses to produce effective solutions. It is used to find 

the possible situation of max  based on the one 
that maximizes the sum as the following: 

 

  
 s.t.  (6) 

  

    
 

 and  
 

Where  has chosen small amount which 

usually it is between  and , so we have 
(Xidonas et al., 2010): 

 (7) 
s.t. 

 
 

 and  

Where  is according to above assumption. 
Proposition 1: The formulation (7 above) of 

the ε-constraint method above produces only efficient 
solutions (it avoids the generation of weak efficient 
solutions). 

Proof. see (Xidonas et al., 2010).  
With a stochastic programming approach to 

multi-portfolio optimization problem, the investor 
wants to clarify the amount of the return and risk of 
investing. To achieve this aim, usually ε-constraint 
method is used where this method keep one of the 
objective function and considers the other as the 
constraint.  

For instance, in the mean-variance model, 
expected return is chosen between its minimum and 
maximum levels. The corresponding optimal 
variance will be found in consecutive solutions. This 
approach leads to a discrete denotation of the 
efficient frontier without producing the whole 
frontier (Tuncer Şakar and Köksalan, 2012).  

5. Results and Discussions  
This paper presents a comparison of two 

methods for multi-portfolio optimization: weighted 
sum method and ε-constraint method. The first 
method is based on weighting, by positive 
coefficients. The second one considers one of the 
objectives as main function and let others be the 
constraints. 

In this section, some disadvantages and 
advantages of this method are discussed respectively. 
First, to illustrate the disadvantages of the ε-
constraint method, we start the discussion using one 
example: 

Example. Let the following objective 
functions and their constraints: 

 

  (8) 

 
s.t.  

 
 

 
According to system above, the feasible 

region is shown in Figure 1. The red directions 
denote the two objective functions. The Pareto set is 
shown in the Figure 1 and result of current ε-
constraint method is shown in the Figure 2 as the 
following: 

 
Figure 1: feasible space and objective functions 

 

 
Figure 2: Results of current ε-constraint method 
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With this method, we can find the points of 

 as the solutions. We see that the point of  
dominating the other solution points. So other 
solutions are weak solutions of this method (Xidonas 
et al., 2010) (Mavrotas, 2009).  

To sum up, some advantages of the ε-
constrained method are listed: 

 1. In the linear case, usually we can use the 
new version of the problem to find the efficient set 
with this method.  

2. In the multi-objective integer and mixed 
integer programming cases, we can apply the ε-
constraint method while we cannot find them via 
weighting method (Steuer 1986, Miettinen 1999).  

3. Unlike the weighting method, the scaling 
of the objective functions is not necessary in the ε-
constrained method. 

4. In this method, the number of the 
generated efficient solutions can be controlled while 
it is difficult to control in other method. 

5. The range of the objective functions 
regards to the efficient set and the warranty of 
effectiveness of the obtained solution are two main 
notes for the ε-constraint method which is necessary 
to attend them (Xidonas et al., 2010).  
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