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Abstract: Creeping flow of an incompressible second grade fluid in a channel of varying width bounded below by a
porous bed is solved using three approximate methods based on three different geometrical configurations.
Expressions for velocity and pressure gradient are calculated for each method. Weight functions are calculated for
all three methods and are evaluated for different values porous layer parameter. It is observed that the weight
functions are influenced by porous layer parameter. The obtained results are applied to idealized stenosis geometry
and resistance to the flow and shear stress are calculated. It is noticed that as we increase the value of porous layer
parameter resistance to the flow in the stenosed region decreases as expected. However with increasing the values of
porous layer parameter and non-Newtonian parameter, the shear stress increases in stenosed region. Previous
published results are obtained as special case to current study.

[Tahira Haroon, Abdul Majeed Siddiqui, Zarqa Bano. Flow of a second grade fluid through curved channel of
non-uniform width bounded below by a permeable bed. Life Sci J 2013; 10(8s): 455-464]. (ISSN: 1097-8135).
http://www.lifesciencesite.com. 75

Keywords: Second grade fluid; porous media; permeability; varying width channel

1. Introduction dynamics, heat and mass transfer, chemical reaction,
Porous medium is defined as a material kinetics and biophysics one can find a huge use of
volume consisting of solid matrix with an curved configuration. The use of curved channel in
interconnected void. It is mainly characterized by its some of these applications is required because of
porosity, ratio of the void space to the total volume of geometrical limitations.
the medium. Earlier studies in flow in porous media A significant amount of interest has been
have revealed the Darcy law which relates linearly paid to the problem of flow through channels of
the flow velocity to the pressure gradient across the varying gap and non-uniform pipes filled with porous
porous medium. The porous medium is also material. Flows through elastic tubes, blood
characterized by its permeability which is a measure circulation through capillaries are some of them. The
of the flow conductivity in the porous medium. The flow of a fluid in an elastic tube, in the absence of
study of fluid flow in porous media is important for porous material, was first approximated by
many environmental, industrial and biological Rashkevsky and later by Morgan. This problem was
problems. Contamination of groundwater, diffusion further investigated by Langlois under several
of tracer particles in cellular bodies, underground oil approximations on the geometry of the gap for a
flow in the petroleum industry and blood flow Newtonian fluid. Siddiqui et al extended the work of
through capillaries are a few relevant instances where Langlois for a non-Newtonian fluid of second grade.
a good understanding of flow in porous media is Rudraiah et al further investigated the work of
important. Moreover, there is a wide variety of Langlois by assuming that the channel is bounded
technical processes that involve fluid dynamics in below by a porous bed. The solution obtained by
various branches of process industry. Flow in porous Rudraiah et al is limited to Newtonian fluids and does
media has been a subject of active research for the not give any information about the non-Newtonian
last four to five decades. Wiest et al reviewed the effects, however many industrial and biophysical
mathematical developments and wused it to fluids are non-Newtonian.
characterize the flow within porous media prior to The main objective of present work is to
1969. He and his co-authors concentrated on natural get an insight into fluid flow in a varying width
formations, such as ground water flow through the channel bounded below by a porous bed for a non-
soil or in underground aquifers. Newtonian fluid of second grade. Three approximate
The flow problems arising from many methods have been used for solving the problem.
natural, industrial and biophysical situation, are These methods provide an alternate approach to the
usually bounded by curved surfaces and thus creating conventional method of solving a two dimensional
a varying width. In operations involving fluid problem. A comparison of the three methods has
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been done by calculating weight functions for each of
the methods which are numerically evaluated for
different values of $\alpha\sigma$. To study the flow
pattern in arteries having stenosis idealized stenosis
geometry is considered. In the following sections, the
problem is formulated, solved and the obtained
results are discussed.
2. Basic Equations

The primary equations that govern the flow
of an incompressible second grade fluid in the
absence of body forces and thermal effects are:

divV =0, (1)

PV = divT, ()
where p is the constant density, V is the velocity
vector, p is the pressure, dot over V denotes the

material time derivative and T is the Cauchy stress
tensor, which is defined as:

T=-pl+ A+ A, +a,A], 3)
where u is the coefficient of viscosity, ¢; and «,
are the normal stress modulii, A; and A, are the

first and second Rivlin-Ericksen tensors respectively,
defined as:

A =L+L'; L=VV, 4)
A,=A +AL+L"A,,

and
()= (*), +(V.V)(*), ©)

where (*), is the partial derivative with respect to .

With the help of equation (3) and (4), momentum
equation (2) becomes:

pV =-Vp +yV2V + (al +a, )divAl2 +a

+a{V2Vt +V2(V><V)><V+V(V~V2V+iAlzﬂ. (6)

3. Problem Formulation

Steady, creeping flow of an incompressible
second grade fluid is considered through an infinite
horizontal channel which is bounded below by a
permeable bed. The flow above the bed called the
free flow is governed by the momentum equations
and the flow through the bed is governed by the usual
Darcy law. Consider cartesian coordinate system
such that x -axis is in the direction of the flow and
v -axis is perpendicular to it. The porous medium is

assumed to be homogeneous and isotropic so that the
permeability & is constant. The channel is bounded
below by a permeable bed at y =0 and above by a

smoothly varying rigid surface:
y =h(x) (7
which is continuous and positive for all values of x.
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Further more we assume that the porous
medium is completely saturated. For plane steady
flow we take:

V= [ux, ) v(x, )} ®)
equation (1) gives:

QL Dy, ©)

ox Oy

and momentum balance equation(6) in component
form yields:

— Q=2 " wVQ, (10)
Ox oy
puQd = —a—P+y—+a1uvzg, (11)
oy
where @ 1is the vorticity defined as:
Q-2 % (12)
Ox Oy
and
ﬁ(x,y)=p+£(u2 -H/z)—o(1 {14V2u+vV2v}
? (13)

—% (et +2a,)|47|

Since for creeping flow the convective part of
momentum equation is negligibly small, equations

(10) and (11) reduce to:
Z—P:—yZ—Q—alvvzg, (14)
X V
a—p:ya—Q+auV2Q, (15)
Oy Ox !

where

P, =p-a {quu +vV2v}—%(3a1 +2a2)|A12|, (16)

? (Gu avjz
— +2|—+—.
Ox dy Ox
The boundary conditions suitable for this
problem are the no slip conditions at the upper rigid
surface and a slip condition at the bounding surface
similar to the one postulated by Beavers and Joseph
(B)) [7], i.e.
(1) No —slip conditions:

u(x, y) =v(x,y) =0,

and

‘AE‘:ga” (17)

at y=~h(x) forallx (18)

(i1) BJ slip condition :
du_olus Q) (19)
d Jk
yv=v

where O = _kp

is the Darcy velocity at y =0,
M Ox
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uy is the slip velocity, k£ is the permeability of the
porous material, & is the dimensionless constant and

v,, is the normal component of Darcy velocity. Since

the media is completely saturated, we assume that
v,, =0 and hence the boundary condition on normal

component of velocity at the nominal surface is
v=0 at y=0. Eliminating the pressure between

equations (14) and (15) we have a third order
differential equation for # and v. Hence in addition to
the no-slip boundary condition (18) and BIJ slip
conditions (19) we need one more boundary
condition. This boundary condition is obtained by
calculating the mass flux across the channel, which
has to be constant at all cross-sections of the channel
for an incompressible second grade fluid. Hence the
required third boundary condition is:

N G
(iii) '[ udy =m, (20)
—h(x)

which is a constant for all x.

4. Solution of the Problem

To find the solution of the problems three
approximate methods depending upon the three
physical situations are used which are discussed in
the following section. Equations (9), (14) and (15)
are three partial differential equations for three
unknown functions u, v and p. Once the velocity
field is determined the pressure field (16) can be
calculated by integrating equations (14) and (15).
When suitable restrictions are placed upon /A(x), the
boundary value problem represented by equations (9)
, (14) and (15) together with the boundary conditions
(18)-(20) is precisely of the sort in which it is helpful
to look at the local picture of flow.

4.1 Method 1: Negligible Wall Slope:
The function A(x) is assumed in such a

way that its first derivative h'(x) is  small

everywhere compared with wunity. Then it is
reasonable to assume that at each value of x the
component of velocity and pressure gradient are
approximately equal to those obtaining in a channel
of uniform width. Thus in order to satisfy the no-slip
boundary condition, v has to be zero throughout the
channel. This approximation leads to Poiseuille flow
in a channel of uniform width with BJ conditions.
The differential equations (14) and (15) then reduce
to:

21
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P _y, (22)

oy
with
. o%u 1 ou. y
=p-aqu—-——0Ba, +2a,)(—)". (23
P=r luayz 2( I 2)(ay) (23)

Eliminating p from (21) and (22), we get:

3
s (4)
oy
Solving equation (24) using boundary conditions
(18) to (20) we find that:
3m 2 2 ao‘(3m—2hQ) 2 2
M e y2y @oGmo2h0) sy (25)
! 2h3( ) 21 (4+ao) Gy )
where
3
= h 6a+0'(4+a0')[_6_pj 26)
Ru  o(l+ao) Ox

The expression for pressure distribution from
equations (16) with the help of equations (14)-(15),
(17) and (25)-(26) becomes:

J‘C o(Bm—-2hQ) a,

x BP@+ac) 204+ ac)

[9(4 +ao)(dm*(1+ ac) — 2achQ)(h* — y*) -
3ac(3m - 2hQ)Am(1 + ac) - 2hacQ)(3y? — 4hy + h?)

By +2a,)
L Lot la)
204+ ao)?

Cdx
p:3,um.|; F+3,ua

[9m2(4+ 0{0)2

+aoc(3m—2hQ)(6y — 4h){3m(4 +ao)y+ %ao-(3m —-2hQ)(6y — 4h)H

27

Equations (25)-(27) reduce to
* solution obtained by Langlois as o — o and by
setting o, =, =0.
* solution obtained by Rudraiah et al by setting
o, =a,=0.
* solution obtained by Siddiqui et al as o — .

Direct substitution of velocity profile (25)
into (18)-(20) reveals that the boundary conditions
are satisfied. The equations (9), (14)-(15) are satisfied
by velocity profile (25) and pressure distribution (27)
provided we neglect terms involving
h'(x) and h(x)h"(x). The validity of this approach
therefore requires that:

|k (%) <<, (28a)
| h(x)h (x)|<<1, (28b)
| 2 (x)h (x)[<<1. (28¢)

for all x
4.2 Method 2: Negligible Wall Curvature:

We can remove the restriction on wall slope
by assuming that the channel width /(x) is a linear
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function of x . Depending upon the sign of h'(x) we
have different geometrical situations of the channel.
If h'(x) is positive, the channel is approximated by a
divergent wedge with a source of flux Q at its vortex.
If h'(x) is negative, the wedge is convergent with a
sink at its vortex. This analysis is carried out

assuming / (x) as positive, and similar results can be

obtained when h'(x) is negative.

The equations of motion for the fully
developed creeping flow of a second grade fluid in
plane polar coordinates are:

Figure 2: Wedge flow geometry.

0 ov

—(ru)+—=0, 28
ar( ) 00 (28)
6[7 2 u 2 av} 2
— =y Vu-—-——|- o, vVoQ, 29
al/' :u|: }/'2 ]/'2 a 1 ( )
op v 2 au}
—=ur|V —+ +a, ruV-Q, 30
a0 " [ 2 2oe) G0
where p is modified pressure and is defined as:
2 v
2 ov YT
oy u| Viu LI S 4
h=p- 2 r? 00 2 ou
r2 00 )|
+(3011+2012)|A12
L 4 J
(€2))
and
? 10 10
Vie 32
o’ ror 200 (32)
-y 10w (33)
or r roé
If we assume the radial component of

1)

velocity to be of the form u = , then continuity
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equation (28) shows that % =0 . Since the media is

saturated, to satisfy the no-slip boundary conditions,
v has to be zero throughout the fluid. Thus no slip
boundary conditions suitable for this problem are:
u(r, f)=v(r,5)=0 (34)
The slip boundary condition, at the normal
surface is,

[ (@) =aoy(fz-0) when 6=0  (35)
where
fo =t iy 0= 0r0- - L2
7o u or
oy =—L e hoy =10,
0 N 0~ 107
is the the value of » when 8 =0.
Further
B . B
J rud@=m e J £O)do=m (36)
0 0
u= &, v=0, (37
r
Equations (29) to (30) become
ap _ [0
v , 38
or r3 ( )
10p 2f

b pea LOL )G, : 2a) (,

107 +1'0)?)
(40)
Eliminating pressure gradient between (38)-

(39) by cross differentiation, we find that

(a2 v ag)=0, 41)
From equation (41) we have either

("4 =0, )

or

%(ﬁ’w vag')=0. 43)

Solving equation (42) using the boundary
conditions (35)-(36), we obtain:

B 5 20+ 4 sin S cos 8 (0

f =my(cos2f —cos20)+ 7{—,b’cos(9—,b’)}sm( 1)
(44)

It can be easily verified that equation (44)

satisfy equation (43). Tanner [8] had shown that any
plane creeping Newtonian velocity field is also a
solution for second grade fluid under identical
velocity boundary conditions. Following him we can
conclude that equation (44) is also a solution of
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equation (43). Using equation (44) into equation (37),
we obtain :

Ay sin fcos@ .
u= —(cosZﬂ co0s260)+—— sin(@ - f),
— pcos(d - )
v=0, (45)
i’" 2'””’ 05(20) - 227 (sin(20 - p)sin(B) - Bsin 2(0 - B))
»
~20Ba; +2a,

)}/ [4m CO§ 2(0) sin” (6')+(§m (B)—sin” (6')) )
5

fAm(x cos?(0)sin* (B)— 2B(cos* (2) sin(20) +sin(23))

+8f% +cos(49))

2¢05(26) sin* (B)(28 cos(B)
—sin(B))- cos2A)(1 -2 5in20)sin(B)? - (B -+ sin(20)sin(B)° )sin(25)

4a1y [2m CO§ (5') sin (H)Xim (B)=sin (5')))

+— (2ﬂ cos(26) +sin(26)) im(4ﬂ))+ T[(7

*T (sin(0— BY2{cos(6)—cos(0—25) + 2f(sin(0) —sin(30) + sin(6 — 2 3)) )sin( ﬁ)jj

—4cos(30)(f cos(B) —sin(f3))

4 cos2(0—- f)+2Bsin2(0 — ﬂ))im(ﬁ' B2 cos(0— ﬁ)j:‘

+ ) ((008(29)7+§m(9 £)—sin(0+ )

(46)
% = ,zmizmsin(Zﬁ) + 2‘4727”(005(29 — B)sin(B) — Bcos 2(0 — B))
r r
2
+ M [8”12(2(sin2 s - sinz(ﬁ))— (cos(0)? —sin(6)? ))

2r
cos(0)sin(0) + Am(4ﬁ c0s 2(0 — f)cos(2f3) + 8sin(26) sin* (B)

— cos20)sin(d8)) + A2(4sin( B2 cos 2(0 - ) - cos(20 - )sin()
2
+ % [4"12 ((cos 2(0) - sin® (g))Jr 2(sin2 B~ Sinz(ﬁ)))cos(ﬁ)sin(ﬁ)

- %((Zﬁcos(ZB) +28c0s(20 — 48) — 83 cos(40 — 28) + 3sin(26)
+ 4sin(40) + sin(20 —48) — 2sin 2(0 — B) — 4sin(46 -2 8)
(2B cos 2(0 -2 3) —sin(260) +sin 2(0 — f3))

_ y
=2sin20+ A== |[ |, 2c08(20) — 208 2(0 - 2.8) - ioz;zﬁ; 20— ﬁ)m,

47)
and
p= %cog(ze) + %(sm(ze — B)sin(B) - fsin 2(0 - B))

2
+W[4m2(c052(9>sm%9>+(s-m2(ﬁ>—sm2(e>)2)
;

— Am(Bcos?(O)sin* () — 2 (cos? (2 8)sin (20) + sin (28))
2
+ % (2B cos(26) +sin (20))sin (4/3)} + A? ((7 +858% + cos(4ﬁ))

) 1-24sin(26)
sm(ﬁ))—cos(zm[sm( . ]

—(ﬁ +sin(29)sin(ﬁ)2)sin(2ﬁ)

~2¢08(26)sin*(B)(2Bcos(f) -

-4 oo’ s @i -sn(®)

+%(sin(9 — B)(2(cos(8) — cos(8 —2.8)
+2/(sin(6) —sin(30) + sin (6 — 28)))sin (B) — 4 cos(30)(Bcos(B) —sin(p))))
N rs ((cos(20) cos 200- )+ Z-ﬁsin 2(0 - B))sin(6 — )28 cos( — ﬁ)ﬂ .
2 +sin(0 - f)—sin(0 + f))
(43)
where
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__ ! : (49)
sin Bcos B— B+2Lsin> B
oo (4msin? B O, sin 28 +20, cos23) (50)

 (I—ac,B)sin 28 -2 cos2 i+ 2ac, sin

Equations (45)-(50) reduce to:

« solution obtained by Langlois as o, — o0 and by

setting o, =, =0.

* solution obtained by Rudraiah et al by setting

o, =a,=0.

* solution obtained by Siddiqui et al as o, — .
Equations (45)-(50) satisfy the boundary

conditions and differential equations (29)-(30). In

order to use these results in varying width channel

problem, we convert them to cartesian coordinates,
with the following notation indicated in figure 2.

-X
u=u, cos 0, cosﬁzuzi,
r Dr
v=u,sin 6, sinO=2,
”
sin o = D cos a = !
V1+D? V1+D?
D
tana:L:D, tan 0 = 2 :—y,
-X x-X h
Jh2+D?y?
r=A(x-X)+yr=X -
( ) +y D

(1)

The components of pressure gradient are given by:
P_hop_ v

ox Dr or 2 06’ (52)
P_ro, h p

 ror Drtob
Equations (45)-(50) using equations (50)-

(51) take the following form:

_2mD>h(h* - y?)  4,D*h
E(h? + D2y?)? E (53)
[Dh ~(h+D y)ﬂ}y—h)

(h* +D?y*)?

_2mD'y(h’ —y?) 4D’y

E(h* +D*y*)? E (54)
[Dh (h+Dzy)/f](y h)

(h* +D*y*)*
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p _ Aum(1+D*)D’h

ox E(h2+D2 2y

24yuD* W -3D%*
- Eyv— ~— 2> _(D-— Al A
E y(hz DZ 2 "5 ( ﬂ) (h2+D2y2)3

%(szzh@Dzhz +37-Dh?)

2 3D2y2)

7#(0(3112 v+ D= y)y? + DY(sH?

s
4D (3 +2a2)(m2D2h(2D2h2 +3y27D4y2)

Ez(hz +Dzy2)1
3h2y+y3))
8D’
*#(D(:"hzy‘f’ D*(4h-y)y* + Dz(xh3 - —(D=3)D-1*y
+4D*(1+ Dyhy*

+(D-12D*(1+D)y?

(1+4D2)h5 —D(1-(D-7)D)k*y + 2(D—-1)> D*i*y?
2

4 2 7
ta 3 D 4 D72)D)hy4—D5(D+D“71)y5)
W) e {HZ[*(ZD”((IHDZ)W*4DZ(Z+D2)h3y+ZDZ(1+5DZ)

(p? —1)y4))ﬂ+(h(h2 + DM —4D%hy + DY +D4y2)2)ﬂ2D

[sz(l +D?hlok* —38%? —SD*R2? + 5Dy + D y4)7%(D(2(2

xh’y* —4D*hy* - D

4a,D°
B2+ %)
+D+3D? i —(5+ D@+ 5D)y +2D(D—11D% —12)i*y? + 2D (12+ D(13D ~ 1)y
+4D4(1+Dz)hy4 —D4(3+D2)y5)—(4(1+3D2)hs +(D—1)(5+3D)(1+3D2)h4y—4D2
x(7+D+8D )y 4D -1)D2(2+ D)3+ 2D Ji*y? + 4D* 8+ D(SD - 1))y — D (3

+

—2p-2D*+ D*)yS)p)+ #(B(&Dhs —(1+29D)i*y ~2D(D+9D? 12)i*y? + 3207y

+2D)(1+ D)3D -4y +(1-3D)D*y° )- 41 + (DD +290? ~69)-1)s*y —an(D
+2907 12y +16D*(7 - 2D% Ji2y* +4D*(D(13D—1) =)y + D*(1+ D(DBD 1)

1))~ (56— nlt+ D2y for? 307 —1py -0 - 0P -1}y g2}

(55)
) 3
p _ 4;1m(21+D )D*y (h* —3D% z)+2AuﬂD
oy E(h* + D*y*) E
2 _3p2,2 2_p2y?
B DD -2py e
(h*+D%y%) (h*+D%y%)

_ 43a, +2a,)D’
E2(n? + D*y*)
Az’” (pn((D> =1 > + 4D*hy —3D*(D* = 1))+

(DyBD*n* +2D%y* - 1?)

(D -1)*(1+ D)h* +4D*(1+ D2D - 1))’y
[7 (D-3)(D~-1)’D’hy* +8D*y’ ]ﬂ]
—42DED(D+ D>~ 1)+ (7+ D+ 7D>+33D° = 6D* Ji’y
+4D*(D+2D* —2)y* + D*(7+ D+7D* + D* + 6D* )y
+(2py((1+3D° ) + 2D -1) DRy - D*(D* = 1))

B S e ) P, A Y W)
Ez(h2 +D7yz)

y(n* +5D%h* = 5D*h*y* =3D'R*y* +2D*y*)
+%(D((l+3Dz)h5 +2D(6+D+9D W'y
—2D*@8+ D+7D* W'y —2D*(12+ D(7D 1))

x i?y* + D*(15 = (2= 15D)D)hy* — 4D°y*)
+((D=1)(1+ DG+ DY) - DA ~16D*(1+ 2D* 'y
—4(D-1)D*4+ D(1+2D(3 + D)) I*y*

+4D* 9+ D+ 6D ity + (D -1)D*(1+ D)

15+ D(7D = 2))hy* —4D°(3+ D@D - 1))y°)B)

- AUZTD((l +5D)* +2D(D +9D* — 4y — 48D y?
—2D*(D(7D -1) +12)hy’ — (1-11D)D*y*
+((D(p+5D>=13)=1)* = 4D(D +19D* - 4)p*y
~16D*(3D* - 8)*y* —4D*(12+ D-27D* %y’
—D*D(51+ D-11D?)- 1)y —8D7y°)p

+Bh =)+ D)= (D* =1} + 6Dy + 3D*(D* = 1)hy” — 20"y ))B>))
where
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ac,(2mD* — Q,E)
E+acyD(D-f)
Upon checking by direct substitution, we find that the
velocity components given by equations (52) and
(53) satisty the boundary conditions (18)-(20). We
also find that equationa (52)-(56) satisfy the
differential equations (9), (14) and (15), provided that:

E=D-p(1-D?%) and 4, =

| hGOh” (¥)<<1, (57)
| h(x)*h" () |<<1. (58)
If condition (57) is satisfied, it can be verified that
dp :a—pdx+a—pdy, (59)
Ox Oy
. . . op op .
is an exact differential when — and — are given
Ox oy
by equations (55) and (56). Therefore:
c
p= I apdx+.|. P 4, (60)

where C is a constant of integration — P and — 2 are
Ox oy

given by equations (55) to (56).

Equations (53)-(56) reduce to:

* solution obtained by Langlois as o, — o and by

setting o, =a, =0.

* solution obtained by Rudraiah et al by setting

o, =a,=0.

* solution obtained by Siddiqui et al as aoy — .

4.3 Method 3: Wall Slope Expanded in Power
Series:

Method 2 discussed above  gave
cumbersome results even for analytically simple form

of h(x). It may also happen that the function A(x)

satisfy equations (57) for small h'(x) but not
negligible. So we can modify the condition:

| D" [= k' (x)" [<<1, (61)
which is satisfied for some positive integer n. For
n>1 we expand the results of method 2 in power
series in D, neglecting the terms of n=3 or hig

order in D. For this we proceed as follo 6)
Expanding tan~'(D) in power series of D, we have:

1 1
tan ' (D) = D—§D3 +§D5 +0(D"). (62)

The function £=D- S(1- DZ) when expanded in
powers of D, gives:

E—§D3{l—§D2+O(D4)}, (63)
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which after some manipulation, becomes:

D’ 3] 2 ,

—=—|1+=D"+0(D 64

z 4{ 5 ( )} (64)
Similarly the function E? gives:

D* 9 4 , }

= =Z|1+=D*+0(D* 65

s 16[ 5 (D7) (65)

The expressions for the velocity components and
pressure, expanding in powers of D and neglecting
the third or higher order in D, become:

o) [ ) 3o 4

(66)

GRS

J) -3 g Yuaoc D ao,
@ "”{1 6D? [hJ D} 4h” [(1 —”D) leD}Ao (68)

o oK 5

4G + 2ay) {27»1 D[LJ 63 4,mD* (;J 942D? [%}

160> \h 32h° 320° \h

e BB

Py _ , 2 ) . ) 5
@ _=9umD(y) SuaceD” i3[ij 400 +20,) [ij 1+D? >
v ok an® 13 \h “lien’ \Ln 76[%
2 N | N N3
24Dy ()| 2L g () T2V p g B3 2oy 2
32n° h)) 16k h) D\h 5\ h h
2
N 9A4,mD )
S L S8 T P B R P T
16h° h h 32h h

and the equation for the pressure distribution
becomes :

C(+ D)

3um
:7,2'[
p 4{ .

3D Co, D (10' D
x } = - —91 }
.
)
2 94,D ,
LoD (4 3y 4G + 2] - 1+p2 4 6{ + 05'"[174ﬂj
P \3 24 h E 32h h

79A°2D[8+Z+ 7y D[S & 2ly JHJF%{ZM jciD(lJrD) [(1+D )" b4

16h° h  Dh S5h 0} xp n°
14+D? 29 10y AyDm 27D1+& I

Rz 20’ h
(70)

where A4, = {m(l— %o D)——Q1 }

Equations (66)-(70) reduce to:

* solution obtained by Langlois as o, — o0 and by
setting o, =, =0.

* solution obtained by Rudraiah et al by setting

o, =a,=0.

» solution obtained by Siddiqui et al as o, — .
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4.4 Comparison of the Three Methods:

In order to have an idea of applicability of
the first and third approximate methods, in this
section a calculation has been made using all the
three methods.

Average pressure gradient across the

channel is:
-1 ) op
=— | ZLa, (71)
A= h(x)Jdo  Ox 4
A is calculated in the neighborhood of a given value
of x using the three methods mentioned above and

the weight functions are compared. Ap is found to be

Ap—i‘;’mF(D) for i=12.3, (72)

where F;(D), for i =1,2,3 are given by:

ac,(3-20,) ,_BL+24,)D
(40, +aoy) (

F (D)=(l+

4o +ao )2 n*
(27m(40'1 +ao, )2 - 9(40‘1 -3ao, )h2 moo (37)
+24m(o, - 2a0, )h2Q0a0020h3Q0a002)

40, D3m* (Gl +ao, )—aGOQO

5

(40‘1 +ao, )h2

(73)
— 4 } A 1
o= (0w 3(1+D2)E[D+(1+D Jun ']
L G4 +22)D" [ o 11(029) (36)
3E’h’

15D +9D6)—3((1+D2) (1+3D4))tan" D]
4,D

3{1 D?)

[ [15 _45D+92D? —43D°

(p(1+D*Jo+240? +13D%)

.\ ) . x] +3(1 JrDz)3

+18D* —15D° —60D° - D" —33D

A

24/71(1 +D? )2

(03 (60 24D +87D? ~64D* +159D* —43D° +113D° +29D* +8D° )
—(D2(84+24D—369D2 +96D° —1000D* +144D° 1410 D°

+96D7 ~884D" +24D° ~213D")

+4(D(3 +171D% + 425D +565D° +340D° +800‘°)

%(1+D +10D%)tan" D )an™' D) -

- 3(1 +D? )4 (3 +11D% + 304)tan"D)tan’lD]tan’lDﬂ

@ D* [n0*(5D+ 307 +3(1+ D?) tan"D)

2,2
u

+
3E%h
~ AP (214 p* )30+ 9D + 67D +7D° +31D* )~ (D12
6l +D?)
+15D +15D* -49D% + 67D* —19D° +13D® - 3D’ 7308)
+6(1+D?f (3= D+10D? )an D)san' D)
2
A (180° +9D* +33D% +5D° +19D7 —(54D* 3D}
12m(1 +D*}

-81D* +2D° —8D® +5D7 +19D*
2 2 3 22
+6(1+D )2(3D—D +24D +3(1+D ) tan D)

x tanle)tanle)l
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(74)
F3(D):[1—§D2j+73a02-0D[[1 ngj DQOJ
_3GA+24)D|  1Dm [1 acy Dj_zgob
2h% 8 4 3h
_%[[1 ﬂDJ_ 2QOD] }_3’”1)0‘1 (1+Dz)
4 4 3h 212 u
(75)

The above three weight functions are
numerically evaluated for different values of ao

and the results are presented Figure 3.

5. Flow through a Channel
Constriction:

The above theory is applied to the problem
of flow through a channel with smooth, axisymmetric
constriction , defined in non-dimensional variables by

[9]:
ay,( zzx]
- 1+cos— |,
2 X

is the maximum projection of the

with Smooth

(76)

h(x)=H,

where 9,
constriction and /|, is the half width of the channel.

The third approximation method is valid,
when the condition given in (57) is satisfied, i-¢;

| D" = B (x)" |<<1, (77)
for some positive integer n. The expression for D,
using equation (76), becomes:

D= h(x) = o gin . (78)

X0 X0

We note that the condition | D" |<<1 will be

satisfied if the following non-dimensional quantities
take the values:

L=4.0,

xy, =1.0,

0, =0.32H,,
H,=1.0.

For these values | D | has a maximum value of 0.5
at x = x,/2 and satisfies the condition given in (59)

for all positive values of 7.

To determine the effect of porous layer
parameter on flow in the channel near stenosis, it is
important to determine the resistance to the flow and
shear stress. The resistance to flow denoted by R.F is
defined as:

RF. - averagepressuredropacrossthechannel

: —— (79)
fluxinthedirectionofflow

To determine R.F. we need to firstly
determine average pressure drop across the channel
and flux in the direction of flow. The average
pressure drop across the channel can be calculated
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form the following expression:
h(x) pL
j P gy ay.
2hL ~h(x)J0 Ox
Using equation (68) and integrating over
the interval —A to +h equation (80) take the form:

Py- (80)

L 2 LD
3wt 1Ny 3D7 g Ka (E DO I @9 11 2 6 g
2hL Jo p2 5 4nL Jo 2 4 3
9m QBay +2a,)D
4hL 0 h“
9 L
- alJ' D m* - Dm l—ﬂD —EQD dx.
4hL Jo h“ 3
(81)

The dimensionless momentum flux in the
horizontal direction has the form:

by
M= J u” dy,
—h
using the expression for u# from equation (66) in

equation (82) and after performing the indicated
integration, we find that:

(82)

_ (4525412002 + 64D* Ju> +1204D(6D° = 35 s, +99754> D)
- 3500% '

(83)

The expression for resistance to the flow,

using equation (81) and equation (83) takes the
following form :

P

RF=— (84)

where P and M are given by equations (81) and
(83) respectively .

Analytical evaluation of integral given in
numerator of equation (84) is complicated, therefore
we have numerically evaluated it on a computer. The
R.F was calculated for different values of ao, and

is presented in Table 1 and figure 4.

Table 1: Resistance to the flow for different values

of ao,

ac, h D R.F

0. 0.84 0.5 1.01654
0.1 0.84 0.5 0.991569
0.2 0.84 0.5 0.941165
0.3 0.84 0.5 0.865944
0.4 0.84 0.5 0.769781
0.5 0.84 0.5 0.659201
0.6 0.84 0.5 0.541964
0.7 0.84 0.5 0.425457
0.8 0.84 0.5 0.315503
0.9 0.84 0.5 0.215862
1.0 0.84 0.5 0.128351
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Figure 3: Comparison of weight functions for
ac,=0.2.
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Figure 4: Resistance force vs permeability
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Figure 5: Variation of wall stress for different values
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Figure 6: Variation of wall stress for different values
of ao,.

6 Results and Discussion

Three approximate methods based on
different geometrical situations are used to solve two-
dimensional second order nonlinear differential
equations arising due to creeping flow of a Second

http://www.lifesciencesite.com

463

Grade fluid through a channel of varying gap
bounded below by a permeable bed. With the help of
these methods we are able to have an idea about the
geometrical effects of the curved channel on the flow
which otherwise are not observed by using other
methods. These methods provide an alternate
approach to the conventional methods of solving a

two dimensional problem. The weight functions F,
F, and F; are calculated for each of the methods,

which are graphically shown in figure 3. It is
observed that F, and F; are influenced by ao,
while F] is independent of ao,. To study the effect
of permeability on flow pattern in arteries having
stenosis an idealized stenosed geometry is considered
and resistance to the flow (R.F) and shear stress are
calculated. The obtained results are graphically
evaluated for different values of ao, and non-

Newtonian parameters ¢, . The tabulated results for

R.F are shown in table 1 which shows the effect of
oo, on resistance to the flow and it is observed that

as we increase the value of oo, R.F decreases as

expected.
Figure 4 shows the behavior of R.F with
ac,, which clearly shows decrease in R.F due to

increase in ao,. In figures 5 and 6 the behavior of
shear stress is shown for different values of ¢, and
ao, respectivley. It is observed that as we increase
the value of ¢, the shear stress increases. A similar

effect is observed as the value of o is increased.

7. Conclusion

Creeping flow of an incompressible second
grade fluid in a channel of varying width bounded
below by a porous bed is solved using three
approximate methods based on three different
geometrical configurations. These methods provide
an alternate approach to the conventional methods of
solving two dimensional problem. With the help of
these methods we are able to have an idea that the
geometrical effects of curved channel on the flow can
not be observed by using other methods. Expressions
for velocity and pressure gradient are calculated for
each method. Weight functions are calculated for all
three methods and are evaluated for different values
ao, . It is observed F, and F; ’s functions are

influenced by ao,.
To study the effect of ao, on flow pattern

in arteries having stenosis an idealized stenosis
geometry is considered and resistance to the flow and
shear stress are calculated. It is noticed that as we
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increase the value of ao resistance to the flow in

the stenosed region decreases as expected. However
with increasing the values ao, and ¢, the shear

stress increases in stenosed region. We can conclude
that the over all effect of ao, is to decrease the

resistance to the flow and thus to reduce the
abnormalities due to irregular boundaries. It is also
found that our results are more general as we can
recover :

» solution obtained by Langlois as o\ o, = o0 and

by setting ¢, = a, =0.

* solution obtained by Rudraiah et al by setting

o, =a,=0.

* solution obtained by Siddiqui et al as o \o; - 0.

We hope that this investigation may be
helpful in evaluating the performance of various
prosthetic ~ devices that ultimately may be
implemented into living system.
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