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Abstract: Creeping flow of an incompressible second grade fluid in a channel of varying width bounded below by a 
porous bed is solved using three approximate methods based on three different geometrical configurations. 
Expressions for velocity and pressure gradient are calculated for each method. Weight functions are calculated for 
all three methods and are evaluated for different values porous layer parameter. It is observed that the weight 
functions are influenced by porous layer parameter. The obtained results are applied to idealized stenosis geometry 
and resistance to the flow and shear stress are calculated. It is noticed that as we increase the value of porous layer 
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1. Introduction 

Porous medium is defined as a material 
volume consisting of solid matrix with an 
interconnected void. It is mainly characterized by its 
porosity, ratio of the void space to the total volume of 
the medium. Earlier studies in flow in porous media 
have revealed the Darcy law which relates linearly 
the flow velocity to the pressure gradient across the 
porous medium. The porous medium is also 
characterized by its permeability which is a measure 
of the flow conductivity in the porous medium. The 
study of fluid flow in porous media is important for 
many environmental, industrial and biological 
problems. Contamination of groundwater, diffusion 
of tracer particles in cellular bodies, underground oil 
flow in the petroleum industry and blood flow 
through capillaries are a few relevant instances where 
a good understanding of flow in porous media is 
important. Moreover, there is a wide variety of 
technical processes that involve fluid dynamics in 
various branches of process industry. Flow in porous 
media has been a subject of active research for the 
last four to five decades. Wiest et al reviewed the 
mathematical developments and used it to 
characterize the flow within porous media prior to 
1969. He and his co-authors concentrated on natural 
formations, such as ground water flow through the 
soil or in underground aquifers. 

The flow problems arising from many 
natural, industrial and biophysical situation, are 
usually bounded by curved surfaces and thus creating 
a varying width. In operations involving fluid 

dynamics, heat and mass transfer, chemical reaction, 
kinetics and biophysics one can find a huge use of 
curved configuration. The use of curved channel in 
some of these applications is required because of 
geometrical limitations. 

A significant amount of interest has been 
paid to the problem of flow through channels of 
varying gap and non-uniform pipes filled with porous 
material. Flows through elastic tubes, blood 
circulation through capillaries are some of them. The 
flow of a fluid in an elastic tube, in the absence of 
porous material, was first approximated by 
Rashkevsky and later by Morgan. This problem was 
further investigated by Langlois under several 
approximations on the geometry of the gap for a 
Newtonian fluid. Siddiqui et al extended the work of 
Langlois for a non-Newtonian fluid of second grade. 
Rudraiah et al further investigated the work of 
Langlois by assuming that the channel is bounded 
below by a porous bed. The solution obtained by 
Rudraiah et al is limited to Newtonian fluids and does 
not give any information about the non-Newtonian 
effects, however many industrial and biophysical 
fluids are non-Newtonian. 

The main objective of present work is to 
get an insight into fluid flow in a varying width 
channel bounded below by a porous bed for a non-
Newtonian fluid of second grade. Three approximate 
methods have been used for solving the problem. 
These methods provide an alternate approach to the 
conventional method of solving a two dimensional 
problem. A comparison of the three methods has 
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been done by calculating weight functions for each of 
the methods which are numerically evaluated for 
different values of $\alpha\sigma$. To study the flow 
pattern in arteries having stenosis idealized stenosis 
geometry is considered. In the following sections, the 
problem is formulated, solved and the obtained 
results are discussed. 
2. Basic Equations  

The primary equations that govern the flow 
of an incompressible second grade fluid in the 
absence of body forces and thermal effects are:  

0,=divV                                                   (1) 

,div= TV                                                (2) 

 where   is the constant density, V  is the velocity 

vector, p  is the pressure, dot over V  denotes the 

material time derivative and T  is the Cauchy stress 
tensor, which is defined as:  

,= 2
12211 AAAIT  p                (3) 

 where   is the coefficient of viscosity, 1  and 2  

are the normal stress modulii, 1A  and 2A  are the 

first and second Rivlin-Ericksen tensors respectively, 
defined as:  

,=;=1 VLLLA T                         (4) 

,= 1112 ALLAAA T  

and  

,).(=*)( (*)V(*) t
                                 (5) 

 where t(*)  is the partial derivative with respect to t . 

With the help of equation (3) and (4), momentum 
equation (2) becomes:  
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3. Problem Formulation  

Steady, creeping flow of an incompressible 
second grade fluid is considered through an infinite 
horizontal channel which is bounded below by a 
permeable bed. The flow above the bed called the 
free flow is governed by the momentum equations 
and the flow through the bed is governed by the usual 
Darcy law. Consider cartesian coordinate system 
such that x -axis is in the direction of the flow and 
y -axis is perpendicular to it. The porous medium is 

assumed to be homogeneous and isotropic so that the 
permeability k  is constant. The channel is bounded 
below by a permeable bed at 0=y  and above by a 

smoothly varying rigid surface:  
 )(= xhy                                     (7) 

 which is continuous and positive for all values of x . 

Further more we assume that the porous 
medium is completely saturated. For plane steady 
flow we take:  

 ,),(),,(= yxvyxuV                                 (8) 

 equation (1) gives:  
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 and momentum balance equation(6) in component 
form yields:  
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 where   is the vorticity defined as:  
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 Since for creeping flow the convective part of 
momentum equation is negligibly small, equations 
(10) and (11) reduce to:  
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The boundary conditions suitable for this 
problem are the no slip conditions at the upper rigid 
surface and a slip condition at the bounding surface 
similar to the one postulated by Beavers and Joseph 
(BJ) [7], i.e. 

:conditions slipNo  (i)   

 xallfor )(=at0,=),(=),( xhyyxvyxu (18) 

:condition slip BJ (ii)  
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 mvv =  

 where 
x
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Q
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=  is the Darcy velocity at 0=y , 
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Bu  is the slip velocity, k  is the permeability of the 

porous material,   is the dimensionless constant and 

mv  is the normal component of Darcy velocity. Since 

the media is completely saturated, we assume that 

0=mv  and hence the boundary condition on normal 

component of velocity at the nominal surface is 
0=v  at 0=y . Eliminating the pressure between 

equations (14) and (15) we have a third order 
differential equation for u and v. Hence in addition to 
the no-slip boundary condition (18) and BJ slip 
conditions (19) we need one more boundary 
condition. This boundary condition is obtained by 
calculating the mass flux across the channel, which 
has to be constant at all cross-sections of the channel 
for an incompressible second grade fluid. Hence the 
required third boundary condition is: 

 

,=)(
)(

)(
mudyiii

xh

xh                        (20) 

which is a constant for all x. 
 
4. Solution of the Problem 

 To find the solution of the problems three 
approximate methods depending upon the three 
physical situations are used which are discussed in 
the following section. Equations (9), (14) and (15) 
are three partial differential equations for three 
unknown functions u , v  and p . Once the velocity 

field is determined the pressure field (16) can be 
calculated by integrating equations (14) and (15). 

When suitable restrictions are placed upon )(xh , the 

boundary value problem represented by equations (9)
, (14) and (15) together with the boundary conditions 
(18)-(20) is precisely of the sort in which it is helpful 
to look at the local picture of flow. 

 
4.1 Method 1: Negligible Wall Slope: 

 The function )(xh  is assumed in such a 

way that its first derivative )(xh'  is small 

everywhere compared with unity. Then it is 
reasonable to assume that at each value of x  the 
component of velocity and pressure gradient are 
approximately equal to those obtaining in a channel 
of uniform width. Thus in order to satisfy the no-slip 
boundary condition, v  has to be zero throughout the 
channel. This approximation leads to Poiseuille flow 
in a channel of uniform width with BJ conditions. 
The differential equations (14) and (15) then reduce 
to: 
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 Eliminating p  from (21) and (22), we get:  
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 Solving equation (24) using boundary conditions 
(18) to (20) we find that:  
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 The expression for pressure distribution from 
equations (16) with the help of equations (14)-(15), 
(17) and (25)-(26) becomes:  
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 Equations (25)-(27) reduce to   
 • solution obtained by Langlois as   and by 

setting 0== 21  .  

 • solution obtained by Rudraiah et al by setting 
0== 21  .  

 • solution obtained by Siddiqui et al as  .  
 Direct substitution of velocity profile (25) 

into (18)-(20) reveals that the boundary conditions 
are satisfied. The equations (9), (14)-(15) are satisfied 
by velocity profile (25) and pressure distribution (27) 
provided we neglect terms involving 

)()(and)( xhxhxh ''' . The validity of this approach 

therefore requires that:  

 1,<<|)(| xh'                            (28a) 

 1,<<|)()(| xhxh '                     (28b) 

 1.<<|)()(| 2 xhxh '                   (28c) 

 for all x  
 
4.2 Method 2: Negligible Wall Curvature: 

 We can remove the restriction on wall slope 
by assuming that the channel width )(xh  is a linear 
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function of x . Depending upon the sign of )(xh'  we 

have different geometrical situations of the channel. 

If )(xh'  is positive, the channel is approximated by a 

divergent wedge with a source of flux Q at its vortex. 

If )(xh'  is negative, the wedge is convergent with a 

sink at its vortex. This analysis is carried out 

assuming )(xh'  as positive, and similar results can be 

obtained when )(xh'  is negative. 

The equations of motion for the fully 
developed creeping flow of a second grade fluid in 
plane polar coordinates are: 

 
Figure  2: Wedge flow geometry. 
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 where p̂  is modified pressure and is defined as:  
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             If we assume the radial component of 

velocity to be of the form 
r
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equation (28) shows that 0=
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. Since the media is 

saturated, to satisfy the no-slip boundary conditions, 
v  has to be zero throughout the fluid. Thus no slip 
boundary conditions suitable for this problem are:  
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 Equations (29) to (30) become  
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              Eliminating pressure gradient between (38)-
(39) by cross differentiation, we find that  
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    From equation (41) we have either  
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Solving equation (42) using the boundary 
conditions (35)-(36), we obtain: 
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It can be easily verified that equation (44) 

satisfy equation (43). Tanner [8] had shown that any 
plane creeping Newtonian velocity field is also a 
solution for second grade fluid under identical 
velocity boundary conditions. Following him we can 
conclude that equation (44) is also a solution of 
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equation (43). Using equation (44) into equation (37), 
we obtain : 

 

),(sin
)(cos

cossin
)2cos2cos(= 




















r

A

r

m
u   

0,=v                                                                      (45) 

 

  

 
 



     

   







,
))(sin)(sin

)(cos)(2(sin)2(sin2)2(cos
)(2cos

2

))(sin)(cos)((3cos4

)(sin))2(sin)(3sin)(sin(2
)2(cos)(cos2)(sin

2

)(sin)(sin)(sin)(cos2
4

)(2sin)(sin)(2sin)(sin)(2sin21)(2cos)(sin

)(cos2)(sin)(2cos2

)(4cos87

8
)(4sin))(2sin)(2cos(2

2

1

)(2sin)(2sin)(2cos2)(sin)(cos8

)(sin)(sin)(sin)(cos4
)22(3

))2(sin)(sin)(2sin(
2

)(2cos
2

=

2

22222

5

2
1

22

3

22

242

222222

5

2
21

33


































































































A

Am

m
r

A

Am

m
r

r

A

r

m

r

p

   

                                                 (46) 

  


  
   
































































,
)2(sin4

)(2cos
)22(cos2)(2cos21

))2(sin)(2sin)22(cos(2

2
)2(sin2

)2(4sin4)2(sin2)4(2sin)(4sin4

)(2sin3)2(4cos8)4(2cos2)(2cos2
2

)(sin)(cos)(sin)(sin2)(sin)(cos4

))(sin)(2cos)2(cos()(sin4)(4sin)(2cos

)(sin)(2sin8)(2cos)2(cos4)(sin)(cos

))(sin)(cos()(sin)(sin28
2

)2(3

))2(cos)(sin)(2cos(
2

)(2sin
2

=

2

22222

4

2
1

22

4

22222
4

2
21

22
































A

Am

m
r

A

Am

m
r

r

A

r

mp

                                                                               (47) 
 and  

  

 

 




 

   



 




,
))(sin)(sin

)(cos)(2(sin)2(sin2)2(cos
)(2cos

2

))(sin)(cos)((3cos4)(sin))2(sin)(3sin)(sin(2

)2(cos)(cos2)(sin
2

)(sin)(sin)(sin)(cos2

)(2sin)(sin)(2sin

)(sin

)(2sin21
)(2cos)(sin

)(cos2)(sin)(2cos2

)(4cos87
8

)(4sin))(2sin)(2cos(2
2

1

)(2sin)(2sin)(2cos2)(sin)(cos8

)(sin)(sin)(sin)(cos4
2

)2(3

))2(sin)(sin)(2sin()(2cos=

2

22222

4

2
1

2

23

2
2

242

222222

4

2
21

22

C
A

Am

m
r

A

Am

m
r

r

A

r

m
p























































 























































                                                  (48) 
 where  

,
sin2cossin

1
=

2



                           (49) 

 
 

.
sin22cos22sin)(1

2cos22sinsin4
=

2
00

11
2

0







 QQm
A         (50) 

 Equations (45)-(50) reduce to:   

 • solution obtained by Langlois as 0  and by 

setting 0== 21  .  

 • solution obtained by Rudraiah et al by setting 

0== 21  .  

 • solution obtained by Siddiqui et al as 0 .  

 Equations (45)-(50) satisfy the boundary 
conditions and differential equations (29)-(30). In 
order to use these results in varying width channel 
problem, we convert them to cartesian coordinates, 
with the following notation indicated in figure 2.  
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The components of pressure gradient are given by:  

.=

,=

2

2































p

Dr

h

r

p

r

y

y

p

p

r

y

r

p

Dr

h

x

p

                                            (52) 

Equations (45)-(50) using equations (50)-
(51) take the following form:  
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Upon checking by direct substitution, we find that the 
velocity components given by equations (52) and 
(53) satisfy the boundary conditions (18)-(20). We 
also find that equationa (52)-(56) satisfy the 
differential equations (9), (14) and (15), provided that:  
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 where C is a constant of integration 
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given by equations (55) to (56). 
 Equations (53)-(56) reduce to:   
 • solution obtained by Langlois as 0  and by 

setting 0== 21  .  

 • solution obtained by Rudraiah et al by setting 
0== 21  .  

 • solution obtained by Siddiqui et al as 0 .  

  
4.3 Method 3: Wall Slope Expanded in Power 
Series: 

 Method 2  discussed above gave 
cumbersome results even for analytically simple form 

of )(xh . It may also happen that the function )(xh  

satisfy equations (57) for small )(xh'  but not 

negligible. So we can modify the condition:  
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 which is satisfied for some positive integer n. For 
1>n  we expand the results of method 2  in power 

series in D, neglecting the terms of 3=n  or higher 
order in D. For this we proceed as follows: 
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 which after some manipulation, becomes:  
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 Similarly the function 2E  gives:  
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 The expressions for the velocity components and 
pressure, expanding in powers of D  and neglecting 
the third or higher order in D, become:  
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 and the equation for the pressure distribution 
becomes : 

 

 

,
4

12
2

10

5

29
1

1)(1
2

4

921

5

93
8

7
8

16

9

4
1

32

96

5

4
1

16

9
)24(3

2

3

3

4

3

2
)

4
(1

4

93
)

5

7
(1

2
4

3
=

52

2
2

6

22

5

2
21

3

3

5

2

52

2
2

6212

2
0

1
0

3

0
2

23

2









































































 





























































































































































h

y
D

h

DmA

h

y
D

h

ymD
y

h

DD
m

h

y

h

y
D

Dh

y

h

y

h

DA

h

Dy

h

DmA

h

y
D

h

y
y

h

y

h

mD

DxDQ
D

m
h

D

h

y

h

D
dx

h

D
m

p

C

x

C

x

C

x







                                                                               

(70) 

 where 







 DQDmA 1

0

3

2
)

4
(1=


.  

Equations (66)-(70) reduce to:  

 • solution obtained by Langlois as 0  and by 

setting 0== 21  .  

 • solution obtained by Rudraiah et al by setting 
0== 21  .  

• solution obtained by Siddiqui et al as 0 .  

4.4 Comparison of the Three Methods: 
 In order to have an idea of applicability of 

the first and third approximate methods, in this 
section a calculation has been made using all the 
three methods.  

Average pressure gradient across the 
channel  is:  
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   is calculated in the neighborhood of a given value 
of x  using the three methods mentioned above and 
the weight functions are compared. p  is found to be  
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                                                                               (75) 
 The above three weight functions are 

numerically evaluated for different values of 0  

and the results are presented Figure 3. 
  

5. Flow through a Channel with Smooth 
Constriction: 

 The above theory is applied to the problem 
of flow through a channel with smooth, axisymmetric 
constriction , defined in non-dimensional variables by 
[9]: 
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 where m  is the maximum projection of the 

constriction and 0H  is the half width of the channel. 

The third approximation method is valid, 
when the condition given in (57) is satisfied, i-e;  

1,<<|)(|=|| n'n xhD                                (77) 

 for some positive integer n . The expression for D, 
using equation (76), becomes:  
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              We note that the condition 1<<|| nD  will be 

satisfied if the following non-dimensional quantities 
take the values:  

 4.0,=L  

 1.0,=0x  

 ,0.32= 0Hm  

 1.0.=0H  

 For these values || D  has a maximum value of 0.5  

at /2= 0xx  and satisfies the condition given in (59) 

for all positive values of n . 
To determine the effect of porous layer 

parameter on flow in the channel near stenosis, it is 
important to determine the resistance to the flow and 
shear stress. The resistance to flow denoted by R.F is 
defined as:  

.
flowirectionoffluxinthed

annelcrossthechssuredropaaveragepre
=..FR    (79) 

 To determine R.F. we need to firstly 
determine average pressure drop across the channel 
and flux in the direction of flow. The average 
pressure drop across the channel can be calculated 

form the following expression:  
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 Using equation (68) and integrating over 
the interval h  to h  equation (80) take the form:  
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                                                  (81) 
 The dimensionless momentum flux in the 

horizontal direction has the form:  

,= 2 dyuM
h

h                                         (82) 

 using the expression for u  from equation (66) in 
equation (82) and after performing the indicated 
integration, we find that:  
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                The expression for resistance to the flow, 
using equation (81) and equation (83) takes the 
following form : 

 
M

P
FR .                                 (84) 

 where P and M  are given by equations (81) and 
(83) respectively . 

Analytical evaluation of integral given in 
numerator of equation (84) is complicated, therefore 
we have numerically evaluated it on a computer. The 

R.F was calculated for different values of 0 , and 

is presented in Table 1 and figure 4.   
 
Table  1: Resistance to the flow for different values 

of 0  

0   h  D  R.F  

 0. 0.84  0.5  1.01654  
 0.1 0.84  0.5  0.991569  
 0.2 0.84  0.5  0.941165  

 0.3 0.84  0.5  0.865944  
 0.4 0.84  0.5  0.769781  
 0.5 0.84  0.5  0.659201  
 0.6 0.84 0.5  0.541964  

 0.7 0.84  0.5  0.425457  
 0.8 0.84  0.5  0.315503  
 0.9 0.84  0.5  0.215862  
 1.0 0.84  0.5  0.128351 
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Figure  3: Comparison of weight functions for 

0.2=0 . 

   

 
Figure  4: Resistance force vs permeability 

   

 
Figure  5: Variation of wall stress for different values 

of  1 . 

 
Figure  6: Variation of wall stress for different values 

of 0 . 

 
6 Results and Discussion 

 Three approximate methods based on 
different geometrical situations are used to solve two-
dimensional second order nonlinear differential 
equations arising due to creeping flow of a Second 

Grade fluid through a channel of varying gap 
bounded below by a permeable bed. With the help of 
these methods we are able to have an idea about the 
geometrical effects of the curved channel on the flow 
which otherwise are not observed by using other 
methods. These methods provide an alternate 
approach to the conventional methods of solving a 

two dimensional problem. The weight functions 1F , 

2F  and 3F  are calculated for each of the methods, 

which are graphically shown in figure 3. It is 

observed that 2F  and 3F  are influenced by 0  

while 1F  is independent of 0 . To study the effect 

of permeability on flow pattern in arteries having 
stenosis an idealized stenosed geometry is considered 

and resistance to the flow ).( FR  and shear stress are 

calculated. The obtained results are graphically 
evaluated for different values of 0  and non-

Newtonian parameters 1 . The tabulated results for 

R.F are shown in table 1 which shows the effect of 

0  on resistance to the flow and it is observed that 

as we increase the value of 0 , R.F decreases as 

expected. 
Figure 4 shows the behavior of R.F with 

0 , which clearly shows decrease in R.F due to 

increase in 0 . In figures 5 and 6 the behavior of 

shear stress is shown for different values of 1  and 

0  respectivley. It is observed that as we increase 

the value of 1  the shear stress increases. A similar 

effect is observed as the value of 0  is increased.  

 
7.  Conclusion 

Creeping flow of an incompressible second 
grade fluid in a channel of varying width bounded 
below by a porous bed is solved using three 
approximate methods based on three different 
geometrical configurations. These methods provide 
an alternate approach to the conventional methods of 
solving two dimensional problem. With the help of 
these methods we are able to have an idea that the 
geometrical effects of curved channel on the flow can  
not be observed by using other methods. Expressions 
for velocity and pressure gradient are calculated for 
each method. Weight functions are calculated for all 
three methods and are evaluated for different values 

0 . It is observed 2F  and 3F ’s functions are 

influenced by 0 . 

To study the effect of 0  on flow pattern 

in arteries having stenosis an idealized stenosis 
geometry is considered and resistance to the flow and 
shear stress are calculated. It is noticed that as we 
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increase the value of 0  resistance to the flow in 

the stenosed region decreases as expected. However 
with increasing the values 0  and 1  the shear 

stress increases in stenosed region. We can conclude 
that the over all effect of 0  is to decrease the 

resistance to the flow and thus to reduce the 
abnormalities due to irregular boundaries. It is also 
found that our results are more general as we can 
recover :  
 • solution obtained by Langlois as 0\  and 

by setting 0== 21  .  

 • solution obtained by Rudraiah et al by setting 
0== 21  .  

• solution obtained by Siddiqui et al as 0\ .  

We hope that this investigation may be 
helpful in evaluating the performance of various 
prosthetic devices that ultimately may be 
implemented into living system. 
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