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Abstract: A kind of robust control strategy for a class of under actuated systems with mismatched uncertainties is 

proposed in this paper. In this approach, multiple layers sliding surface (MLSS), are defined, firstly, divided system 

states into several subsystems and the sliding mode surface of every subsystem is defined. Secondly, the sliding 

mode surface of one subsystem is selected as the first layer sliding mode surface. The first layer sliding mode 

surface is used to construct the second layer sliding mode surface with the sliding mode surface of another 

subsystem. This process continues till sliding mode surfaces of all the subsystems are included. Two methods are 

used for optimization of response, genetic algorithm (GA) and design compensator at the last layer of sliding mode 

surface. GA improved the coefficient of sliding mode surface, and compensator, compensated delaying with the 
mismatched uncertainties. In this paper a new sliding mode control law is designed to guarantee that every sliding 

surface can converge rapidly to zero. The asymptotic stability of the entire sliding mode surfaces is proved 

theoretically. The simulation results for the ball and beam system are presented to demonstrate the effectiveness and 

robustness of the method. This control scheme is compared with Decoupled sliding mode with fuzzy neural network 

control (DSMFNNC) scheme. The results show that multiple layers sliding mode control performance has better 

than (DSMFNNC). 
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1. Introduction 

Study of under actuated systems has rapidly 

expanded in recent years. Under actuated systems are 

characterized by the fact that they have fewer 

actuators than the degrees of freedom to be 

controlled. These systems with fewer actuators and 

gaining fault tolerance make for decreasing the 

number of actuators, lightening the systems, reducing 

the cost. There has been growing attention and 

increasing interest in under actuated systems in recent 
years. Mechanical systems with fewer number of 

control inputs than the number of degrees of 

freedoms to be controlled are called under actuated 

systems [1]. Class of typical under actuated systems, 

Ball and Beam systems are often used as a 

benchmark for verifying the effectiveness of new 

control approaches. 

Ball and beam system is one of the most enduringly 

popular and important laboratory models for teaching 

control systems engineering [2]. It is widely used 

because many important classical and modern design 

methods can be studied based on it (is shown in 

Fig.2).  

The sliding mode controller is a powerful nonlinear 

controller, which has been developed and applied to 

feedback control systems for the last three decades. 

For under actuated systems, designing a conventional 

sliding mode surface is not appropriate, because the 

parameters of the sliding mode surface can't be 

obtained directly according to the Hurwitz condition. 
Yi [3] presented a hierarchical sliding mode 

controller for large scale under actuated systems, 

whose sliding mode surfaces were asymptotically 

stable. Thus we can consider designing the multiple 

layers sliding mode control for ball and beam system.  

In multiple layers sliding surface, Firstly, divided 

system states into several subsystems and the sliding 

mode surface of every subsystem is defined. 

Secondly, the sliding mode surface of one subsystem 

is selected as the first layer sliding mode surface. The 
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first layer sliding mode surface is used to construct 

the second layer sliding mode surface with the sliding 

mode surface of another subsystem. This process 

continues till sliding mode surfaces of all the 

subsystems are included. Two methods are used for 

optimization of response, genetic algorithm and 
design compensator at the last layer of sliding mode 

surface. Genetic algorithm improved the coefficient 

of sliding mode surface [4], and compensator, 

compensated delaying with the mismatched 

uncertainties. 

2. Multiple layers sliding mode control design 

For SIMO under actuated mechanical systems, the 

mathematical model can be translated into the 

following form 
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Where 
1 2 2[ , ,... ]T

nX x x x  is the state variables 

and u is the input of the system, fn and bn are 

bounded nominal dn is the term of lumped 

mismatched uncertainties, including system 

uncertainties and external disturbances. It’s assumed 

that they are bounded by| dn |≤ dnmax , where dnmax are 

upper boundary, i=1, 2, …,n. 

As the Multiple layers sliding structure has been 
shown in Fig. 1 

 

First layer can be defined by (1) where ci are 

constants which have the same sign but this 

parameters and other sliding surface can't be obtain 

according Hurwitz condition so for this reason and 

optimizations, using genetic algorithm. 
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 According to the fig.1 the second layer defined as 

2 3 3 1s c x s   for the state variables of the ith 

subsystem, the sliding mode surface is defined as 

1 1 1i i i is c x s   
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So the total equivalent law for ith layer sliding 

surface can be defined as: 
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usm can be assumed as: 

Usm(i)=ueq(i)+usw(i)+u′sw(i)                                          (8) 
Because total equivalent law is not enough to 

guarantee that every sliding surface can converge 

rapidly to zero, usw(i) is the switch control law for 

every layer sliding surface and u′sw(i) is the switch 

control law for the last layer sliding surface. The 

switch control law, usw(i) and u′sw(i) can improved the 

response time. 

The switch control law is defined as [5]: 

( )

1

0 1

sgn( ) / ( ) 1
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u
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 (9) 

Where is a positive constant,
12j j   ,  

Fig 1. Multiple layers sliding structure 
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For the matched uncertainties, the above multiple 

layer sliding mode control can resist them because of 

the invariant characteristic of the sliding mode. For 

the mismatched uncertainties, will be designed a 

sliding mode compensator to resist them where ucom(i) 

is the distributed compensator, For the i-th layer 

sliding surface, ucom(i) is given by[5]: 
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(12) 

The total controller for the under actuated system (1) 

can define as:  

( ) ( ) ( )i sm i com iu u u   

3. Stability 

For the under actuated system (1), the Lyapunov 

function can be defined as [7]:  
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Both sides of (13) are integrated: 
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We know that: 
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 at same time, from the definition of the (12), we also 

know that: 
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According to Barbalat’s lemma, we can know when 

 t → ∞, 
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From (7), (11) and (12), we have 
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With using the Barbalat’s lemma, there is 

lim( 0), 1,2,,...2 2i
t

s i n


   That is to say, all 

the sliding surfaces are asymptotically stable. 

 

4. The GA Optimization 

Genetic algorithms, introduced by Holland [4], are 

based on the idea of engendering new solutions from 

parent solutions, employing mechanisms inspired by 

genetics. In the following text the controller will be 

optimized by genetic algorithm. The optimization 

parameters are ic and i . The number of variables is 

8. 
The fitness function is shown as formula. Evaluate 

the fitness value of each output. 
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ku  is expectation output and 
ku


 is reality output, in 

this paper we have 8 Constant that designed with GA. 

 

5. Ball and Beam System 

 

This system is one off popular and important 

laboratory models for teaching control system 

engineering. These models cover many important 

modern and classical design methods. The ball moves 

freely along the length of the beam. Sensors are 

placed on one side of the beam to detect the position 

of the ball. An actuator must drive the beam to a 

desired angle, by applying a torque at the center. The 

control job is to automatically regulate the position of 

the ball by changing the position of the motor is very 

simple a steel ball rolling on the top of a long beam. 

It has a very important property open loop unstable, 
because the system output (the ball position) 

increases without limit for a fixed input (beam angle). 

This is a difficult control task because the ball does 

not stay in one place on the beam but moves with an 

acceleration that is proportional to the tilt of the beam 

[2]. 

According to the fig.2 and the position and velocity 

of the center of mass of the ball is: 
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Where  ,r v  
 

   the translational part of the 

kinetic energy is given by 
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energy of the ball and beam system is given by 
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The elements of the inertia matrix of the ball and 

beam system are 

2

11

12

22

0

m j mr

m

m m

 





inertia matrix of the 

ball and beam system only depends on the position of 

the ball r. This means that the position of the ball is 

the shape variable of the ball and beam system which 

is unsaturated. Therefore, the ball and beam system is 

a Class (II) under actuated system. 

 
Fig 2. Ball and beam structure 
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where
1x  , the angle of the pole with respect to the 

vertical axis
2x 



 , the angle velocity of the pole 

with respect to the vertical axis 3x r , the position 

of the cart 4x r


 , the velocity of the cart, B is 

the

2

2

b

mr

j mr
, Jb is the moment of inertia of the ball; 

m is the mass of the ball; r is the radius of the ball; g 

is the acceleration of gravity. 
 

 

 

 

 

 

 

 

 

 

6. SIMULATION RESULTS 

 

In the simulation, the following specifications are 

used: 
6

2

0.7143, 2 10 , 0.05 ,

0.1 , 9.8 / ,| | 0.08

bB J m kg

r m g m s d

   

  

 

Initial values are: 

1 2 3 460 , 0, 10, 0x x x r x r 
 

         

With GA constant is found: c = [-1.636   -0.5672    

0.3509    0.5165    0.0001    0.8015         1.054    0.71] 
Fig.3. shows the entire sliding surfaces. By this 

control method, all sliding surfaces are 

asymptotically stable. 

Figs. 4 and 5 show time responses of θ and r 

respectively. It is found that the ball and beam can be 

stabilized to the equilibrium point, and shown that θ 

and r converge to zero, respectively. Further, the 

performance and robustness of proposed control is 

better than reference [6] (Lon-Chen Hung, Hung-

Yuan Chung2007). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig 3. Sliding surfaces  
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Fig 4. Angel evolution of the beam 

a) Proposed control 

b) Decoupled sliding-mode with fuzzy-neural network 

 
 

Fig 5. Position evolution of the ball 

a) Proposed control 

b)        b)    Decoupled sliding-mode with fuzzy-neural 

network 

c)  
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7. Conclusions 

The multiple layers sliding mode controller for a 

class of under actuated systems with mismatched 

uncertainties has been proposed in this paper. 
Simulation results were presented. The asymptotic 

stability of the entire sliding mode surfaces has been 

proved theoretically. For determining of the 

constants, genetic algorithm (GA) has been used. The 

proposed control method is applied to ball and beam 

system, the simulation results have shown that the 

proposed control better than Decoupled sliding mode 

with fuzzy neural network control (DSMFNNC) and 

the curves are smoother and the response time is 

shorter. 
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