Abstract: The aim of this work is to study the relation of OV6 (oval cells), AFP and hepatocyte growth factor (HGF) and transforming growth factor beta 1 (TGFβ1) to repopulation of the liver in patients with chronic hepatitis C, liver cirrhosis and hepatocellular carcinoma (HCC). Ninety patients with chronic liver disease and HCC were subjected to clinical examination, laboratory investigations for hepatitis C, liver function tests and abdominal ultrasonography. Liver biopsy was performed for histopathological examination. They were 3 groups; positive for hepatitis C: chronic hepatitis (35), liver cirrhosis (25) and HCC (30) and ten control patients with negative serological markers for hepatitis (C&B). Immunohistochemical staining for tissue α-fetoprotein (AFP), OV6, HGF and TGFβ1 was done. In normal liver specimens, tissue AFP, OV6, HGF and TGFβ1 showed no expression. In chronic hepatitis, tissue AFP was negative, OV6 showed insignificant increase while HGF and TGFβ1 showed a significant increase compared to control group \( p<0.05 \), which may indicate repopulation of the liver by proliferation of hepatocytes rather than oval cells at this stage. In cirrhosis with disturbed liver architecture, fibrosis and impaired liver functions, there was an insignificant increase in OV6 and tissue AFP and a significant increase in HGF and TGFβ1 relative to control \( p<0.001 \), which may be related to the bi-potential property of oval cells differentiating into both hepatocytes and bile ductules, and to the anti proliferative effect of TGFβ1 on hepatocytes. In HCC there was significant increase in tissue expression of OV6, AFP and TGFβ1 relative to control, to CH and to LC groups \( p<0.001 \), while HGF was significantly increase \( p<0.001 \) relative to control & CH. In conclusion, repopulation of the liver in chronic hepatitis may be more related to hepatocytes proliferation rather than to oval cells. In liver cirrhosis, the increase in oval cells is not significant to restore liver functions. In HCC; OV6, AFP, HGF and TGFβ1 were significantly increased. Further studies are needed in search for factors that may hinder differentiation of oval cells to functional hepatocytes in liver cirrhosis and may lead to malignant transformation.

Key words: AFP, OV6, HGF, TGFβ1, IHC, Hepatitis C, HCC

1. Introduction

Chronic Hepatitis C Virus (HCV) is recognized as a major threat to global public health. An estimated 170 million people worldwide are infected and 3 to 4 million new cases per year, most of them are chronically infected and at risk for liver cirrhosis and hepatocellular carcinoma. In Egypt, 10%–20% of the general populations are infected and HCV is the leading cause of HCC and chronic liver disease in the country (1-2). Liver cirrhosis in humans represents the end stage of chronic liver injury and it is characterized by the disorganized proliferation of hepatocytes and biliary cells, excessive scarring, and loss of the three-dimensional architecture of the hepatic lobule, which leads to chronic liver failure eventually requiring transplantation (3).

The ability of the liver to regenerate is a property that is unique among solid organs in mammalian species. Extensive research has been conducted to elucidate cellular & molecular events occurring during liver regeneration (4). Two cell lineages have been considered as candidates; the first is hepatic stem cell and the second is mature hepatocyte (5). Oval cells are small oval shaped epithelial cells identified as hepatic stem cells in the adult liver following severe repetitive liver injury (6) and they are bi-potential capable of differentiating into either hepatocytes or cholangiocytes. Oval cells might give rise to HCC as a result of the arrest of stem cell maturation (7). OV6 and AFP are of the many markers which have been used to identify oval cells and OV6 is widely chosen as the oval cell marker of choice (8).

According to Yamagami et al. (9) and Lee et al. (8) HGF controls the growth of hepatocytes, it is produced principally in mesenchymal cells. Suzuki et al. (10) showed that HGF induced early transition of albumin –ve to albumin +ve cells and was an effective mitogen for differentiating cells. Also HGF and its receptor system c-met play an important role
in regulating growth and metastasis of liver tumors (11). Recent studies have focused on the relationship of HGF to the development and chronic nature of viral hepatitis and the progression of chronic hepatitis and development of HCC (9).

TGFβ1 plays an important role in regulation of cell growth and differentiation, angiogenesis, extracellular matrix formation, immunosuppression and cancer development (12). Mammals produce 3 TGFβ1 ligands: TGFβ1, TGFβ2 and TGFβ3. TGFβ1 is the major form in adults (13).

TGFβ produced by the steatotic cells inhibits hepatocytes replication (14). The signaling mechanisms activated by TGFβ family proteins have emerged as important players in the self renewal and maintenance of stem cells in their undifferentiated state (15). When TGFβ signaling is interrupted, the imbalance can result in an undifferentiated phenotype and cancer may ensue (16). TGFβ represents a potentially important link between fibrosis and neoplasia (17).

**Aim of the work**: To study the relation of oval cells (OV6), tissue AFP, hepatocytes growth factor (HGF) and transforming growth factor beta (TGFβ1) to repopulation of the liver in patients with chronic hepatitis, liver cirrhosis and hepatocellular carcinoma.

**2. Material and Methods**

**Patients**

Ninety patients (positive for hepatitis C), 72 males and 18 females; mean age 40.3 ± 2.4, range 25-65 years were the subject of this study. Patients were admitted to the Department of Gastroenterology and Hepatology, Theodor Bilharz Research Institute, Giza, Egypt. They included 35 cases of chronic hepatitis C virus infection (CH), 25 cases with cirrhosis and 30 cases of HCC. The presence of HCV-RNA in patients sera was detected by real-time polymerase chain reaction. They were subjected to thorough clinical examination, urine and stool analysis, liver function tests, ultrasonography and liver biopsy for histopathologic and immuno-histochemical (IHC) studies. The study protocol was approved by the Ethics Committee of TBRI according to the Institutional Committee for the Protection of Human Subjects and adopted by the 18th World Medical Assembly, Helsinki, Finland.

Ten control liver biopsies were from individuals subjected to laparoscopic cholecystectomy after their consent. They were 4 males and 6 females with a mean age of 48.3 ± 2.3 years. Their liver function tests were normal and had no serologic evidence of hepatitis B and/or C viruses.

Liver biopsies taken were fixed in 10% buffered formalin for 24 hours, and then processed in ascending grades of ethyl alcohol, xylene, wax and paraffin blocks. Sections (4 μm) were cut on albuminized glass slides and stained with Hematoxylin & eosin and Masson trichrome stains.

All sections were subjected to light microscopic examination for histopathological classification of cases; chronic hepatitis, cirrhosis according to Desmet et al., and Knodell et al. (18,19), and HCC cases according to Edmondson and Steiner (20). Other liver sections (4 μm) were cut on slides, which were treated with TESP (3-aminopropyl-triethoxysilane, Sigma) for IHC.

**Immunohistochemistry for Detection of OV6, tissue AFP, HGF and TGFβ1 tissue antigens**:

Immunohistochemical reaction was performed using an avidin biotin complex (ABC) immunoperoxidase technique according to Hsu and Reine (21) using anti human OV6, tissue AFP, HGF and TGFβ1 on paraffin sections; dewaxed in xylene and hydrated in descending grades of ethanol. Endogenous peroxidase activity was quenched by incubation in 3% hydrogen peroxide in 100% methanol for 20 min. Antigen retrieval was performed by microwaving the sections in citrate buffer (pH 6.0) for 15 min at 700 W. Sections were incubated overnight at 4°C with the anti-human primary antibodies against OV6 (purchased from Santa Cruz Biotechnology Inc.; Santa Cruz, USA) monoclonal antibody, diluted at 1:50,1:50,1:150, 1:100 respectively in BPS. Next incubation in 3% hydrogen peroxide in 100% methanol for 20 min. Antigen retrieval was performed by microwaving the sections in citrate buffer (pH 6.0) for 15 min at 700 W. Sections were incubated overnight at 4°C with the anti-human primary antibodies against OV6 (purchased from Santa Cruz Biotechnology Inc.; Santa Cruz, USA) monoclonal antibody, diluted at 1:50,1:50,1:150, 1:100 respectively in BPS. Next day, after thorough washing in PBS, the sections were incubated with streptavidin-biotin-peroxidase preformed complex and evidenced using a peroxidase/DAB (diaminobenzidine) enzymatic reaction for OV6 & HGF & TGFβ1 and AFP. Staining is completed by 5-10 minutes incubation with 3, 3-diaminobenzidine (DAB) + substrate - chromogen which results in a brown-colored precipitate at the antigen site for OV6 & HGF & TGFβ1 and tissue AFP (cytoplasmatic stain). Slides were washed in PBS for 5 minutes. Slides were placed in 70%, 95% and then 100% alcohol each for 5 minutes. The cell nuclei were counterstained with Mayer’s hematoxylin. The cover slips were mounted using Dpx.

Positive and negative control slides for each marker were included within each session. As a negative control, liver tissue section was processed in the above mentioned sequences but the omission of the primary antibody and PBS was replaced.

**Evaluation of immunostaining**: Sections were examined under light microscopy at x 400. The number of positively stained cells was recorded in ten microscopic fields.
with the highest expression and the percentage was calculated from their mean. Zero% was given to unstained sections. Pattern of all markers were cytoplasmic staining.

**Immunohistochemical scoring of OV6**

OV6 was expressed as cytoplasmic stain, brown color; the number of positive cells counted in 10 microscopic fields, with power of magnification (x 400) according to Crosby et al. (22).

**Immunohistochemical scoring of tissue alpha fetoprotein:**

Tissue alpha fetoprotein was expressed as cytoplasmic brown color and counting the number of positive cells in 10 microscopic fields, with power of magnification (x 400) according to Hasib et al. (23).

**Immunohistochemical scoring of HGF:**

Immunohistochemical reactions for HGF was expressed as cytoplasmic stain, brown color, counted as the number of positive cells in 10 microscopic fields, with power of magnification (x 400) according to Inoue et al. (24).

**Immunohistochemical scoring of TGFβ1:**

TGFβ1 was expressed as cytoplasmic brownish color and counting positive cells in 10 microscopic fields with highest expression, with power of magnification (x 400), according to (Kim et al. 25).

**Statistical analysis:**

The Statistical Package for Social Sciences (SPSS) for Windows (version 10) computer program was used for statistical analysis. For comparison of more than 3 group's means, one-way ANOVA test, Post Hoc test was used. Comparison between percent positive cases was calculated by Chi-square test. A P value < 0.05 was considered statistically significant.

**3. Results:**

Patients were 66 males (73.3 %) and 24 females (26.7 %), their age ranged 23-72 years with a mean of 46.6±4.5 years, as well as 10 patients with normal liver as control group. They were 4 males and 6 females, their age ranged (30-45 years) with a mean of 39.4±3.7years, PCR was positive for HCV, serum biochemical tests are shown in table 1.

**Table 1. Liver biochemical profile of studied groups**

<table>
<thead>
<tr>
<th>Variables</th>
<th>CH (n=35) Mean ± SD</th>
<th>LC(n=25) Mean ± SD</th>
<th>HCC(n=30) Mean ± SD</th>
<th>Control (n=10) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (0-41) U/L</td>
<td>53.95 ± 29.16ab</td>
<td>45.8 ± 31.91a</td>
<td>36.87 ± 21.5</td>
<td>19.8 ± 5.59</td>
</tr>
<tr>
<td>AST (0-38) U/L</td>
<td>38.3 ± 17.33b</td>
<td>69.8 ± 16.15abc</td>
<td>72.9 ± 34.75a</td>
<td>20.2 ± 5.87</td>
</tr>
<tr>
<td>Tot. protein (6-8) gm/dl</td>
<td>7.76 ± 1.17</td>
<td>8.02 ± 0.64a</td>
<td>7.74 ± 1.14</td>
<td>7.24 ± 0.39</td>
</tr>
<tr>
<td>S. albumin (3.5-5) gm/dl</td>
<td>4.46 ± 0.4b</td>
<td>3.62 ± 0.22abc</td>
<td>3.28 ± 0.54a</td>
<td>4.22 ± 0.18</td>
</tr>
<tr>
<td>Total bilirubin (0.1-1.2) mg/dl</td>
<td>0.9 ± 0.5b</td>
<td>1.2 ± 0.45abc</td>
<td>1.7 ± 1.02a</td>
<td>0.9 ± 0.15</td>
</tr>
<tr>
<td>Direct bilirubin (0-0.25) mg/dl</td>
<td>0.46 ± 0.35a</td>
<td>0.55 ± 0.5a</td>
<td>1.09 ± 0.81a</td>
<td>0.21 ± 0.06</td>
</tr>
<tr>
<td>Prothrombin Concentration (70-100)%</td>
<td>90.2 ± 10.43abc</td>
<td>83.2 ± 10.6abc</td>
<td>76.0 ± 11.29a</td>
<td>98.8 ± 2.53</td>
</tr>
</tbody>
</table>

a: p value <0.05 relative to the control group; b: p value <0.001 relative to the control group
b: p value <0.05 relative to the HCC group; c: p value <0.001 relative to the HCC group
c: p value <0.001 relative to the CH group

The number of positive cases for OV6, AFP, HGF, and TGFβ1 expression in liver biopsies is shown in table 2. The number of positive cases for OV6 cases expression was significantly increased in LC and HCC compared to CH cases.

There is no tissue OV6 expression in the control group. Expression of OV6 is cytoplasmic, in the cells lining bile ducts, hepatocytes at the periphery of portal tracts and at the periphery of cirrhotic nodules, whereas there is a high expression in the HCC group. There is no statistical significant difference in tissue OV6 expression between the CH & LC groups relative to the control group, while in HCC group; it is statistically significant relative to the control group at p < 0.001. Tissue OV6 expression in HCC group is statistically higher in compared to &LC groups at p < 0.001 (Tables 2 and 3; Figs. 1a, b, c, d).
Table 2. Number of positive cases with OV6, tissue AFP, HGF and TGFB1 in studied groups in studied groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>OV6</th>
<th>Tissue AFP</th>
<th>HGF</th>
<th>TGFB1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of positive cases %</td>
</tr>
<tr>
<td>Control (n=10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CH (n=35)</td>
<td>2*</td>
<td>22.9%*</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>LC (n=25)</td>
<td>1</td>
<td>72%</td>
<td>0*</td>
<td>7*</td>
</tr>
<tr>
<td>HCC (n=30)</td>
<td>7*</td>
<td>43.3%</td>
<td>21</td>
<td>70%</td>
</tr>
</tbody>
</table>

*Highly significant increase in number of positive cases in LC and HCC compared to CH at \( p < 0.001 \)
^Highly significant increase in number of positive cases in HCC compared to LC at \( p < 0.001 \)
#Highly significant increase in number of positive cases in HCC compared to CH at \( p < 0.001 \)

Table 3. Tissue expression of OV6, tissue AFP, HGF and TGFB1 in studied groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control (n=10) Mean ± SD</th>
<th>CH (n=35) Mean ± SD</th>
<th>LC (n=25) Mean ± SD</th>
<th>HCC (n=30) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV6</td>
<td>0.0±0.0</td>
<td>4.3±1.01*</td>
<td>10.3±3.07*</td>
<td>25.8±11.2*</td>
</tr>
<tr>
<td>Tissue AFP</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>12.3±1.07*</td>
<td>55.8±15.2*</td>
</tr>
<tr>
<td>HGF</td>
<td>0.0±0.0</td>
<td>16.3±1.21**</td>
<td>40.3±7.03*</td>
<td>47.5±13.2*</td>
</tr>
<tr>
<td>TGFB1</td>
<td>0.0±0.0</td>
<td>12.1±3.41*</td>
<td>38.3±7.4**</td>
<td>62.5±15.2*</td>
</tr>
</tbody>
</table>

*: \( p \) value <0.05 relative to the control group
**: \( p \) value <0.001 relative to the control group
***: \( p \) value <0.001 relative to the HCC group

Figure 1: A) Control liver section, negative for OV6 (IHC, DAB, X 200). B) Chronic hepatitis C with scattered bile duct lining cells stained with OV6 as cytoplasmic stain, arrow (IHC, DAB, X 200). C) Chronic hepatitis C merging into cirrhosis with scattered bile duct lining cells stained with OV6, and positive hepatocytes at the periphery of the cirrhotic nodules, arrow (IHC, DAB, X 200). D) HCC, showing hepatocytes positively stained with OV6 as brownish cytoplasmic stain, arrow (IHC, DAB, X 400).
The number of cases Positive for AFP was significantly increased in HCC compared to LC cases. There is no tissue alpha fetoprotein expression in the control and in CH groups. Expression of AFP is cytoplasmic in hepatocytes. There is no statistically significant difference in tissue alpha fetoprotein expression between the LC group relative to the control group, while expression in HCC group is statistically highly significant relative to the LC group at $p < 0.001$ (Tables 2 and 3; Figs. 2a, b, c, d).

Cases with positive HGF expression were significantly increased in HCC compared to CH and LC groups. There is no tissue HGF expression in the control group. Expression of HGF is cytoplasmic, in the sinusoidal cell lining (Kupffer cells & endothelial cells), in the hepatocytes and bile ducts lining cells. There is statistically significant difference between the CH group relative to the control group at $p < 0.05$ and in LC at $p < 0.001$ relative to control. In HCC group there is statistically significant increase relative

Figure 2: A) Control liver section, negative for AFP (IHC, DAB, X 200). B) Chronic hepatitis, negative for AFP (IHC, DAB, X 100). C) A case of liver cirrhosis showing scattered hepatocytes positive for alpha fetoprotein (cytoplasmic brownish color) monoclonal antibody, arrow (IHC, DAB, X 200). D) A case of HCC showing many hepatocytes showing positive cytoplasmic, arrow stain for alpha fetoprotein monoclonal antibody (IHC, DAB, X 400).
to the control at $p < 0.001$ (Tables 2 and 3; Figs. 3a, b, c, d).

Figure 3: A) Control liver section, negative for HGF (IHC, DAB, X 200). B) Chronic hepatitis C, showing mild HGF expression, (cytoplasmic), arrow (IHC, DAB, X 200). C) Chronic hepatitis C, with cirrhotic nodule, showing increase HGF expression, arrow (IHC, DAB, X 200). D) A case of HCC showing intense cytoplasmic staining for HGF, arrow (IHC, DAB, X 200).

The number of cases positive for TGFB1 was significantly higher in LC and HCC compared to CH group. There is no tissue expression of TGFB1 in the control group. There is statistical significant difference between the CH & LC groups relative to the control group at $p < 0.05$ & $p < 0.001$ respectively. In HCC group there is a statistically significant increase relative to the control and CH & LC groups at $p < 0.001$ (Tables 2 and 3; Figs. 4a, b, c, d).
4. Discussion

Hepatic progenitor cells are small cells with an oval nucleus and scant cytoplasm which is strongly immunoreactive for rat oval cells (OV6). Oval cells are one of the important origins of liver stem cells (26). These facultative progenitor cells commonly referred to as oval cells are located within the terminal bile ducts and are able to give rise to both hepatocytes and cholangiocytes (27). In our study, there was no tissue expression of OV6 in the liver in normal control group. In CH group there was an insignificant increase in OV6 expression. In LC, there was an increase but still insignificant compared to control. Tissue AFP expression was negative in control cases, and in CH group. In LC, tissue AFP showed an insignificant increase compared to control. The study by Roskmans et al. (28) showed that in very early stages of human liver regeneration, small oval like cells (putative progenitor cells) appear and are immunoreactive for OV6. Fausto et al. (29)
revealed a very low number of AFP+ve cells in the normal adult liver, predominantly in the perportal region. Most of these cells have the morphologic appearance of oval cells. The AFP +ve cells are located either within the bile ducts or in the hepatic parenchyma immediately adjacent to the ducts. Fausto and Campbell (27) showed that in more sustained liver injury, when hepatocytes are unable to enter the cell cycle, a second compartment of cells actively proliferates and is capable of restoring damaged liver mass. These facultative progenitor cells, commonly referred to as oval cells, are located within the terminal bile ducts and are able to give rise to both cholangiocytes and hepatocytes. Differentiation of oval cells can contribute the hepatocytes population usually when hepatocytes proliferation is impeded and hepatic destruction is severe (30). Lowes et al. (31) stated that oval cells were not observed in normal liver control. Their number increased significantly \((p<0.01)\) as disease severity increased from mild through moderate to severe chronic hepatitis. Oval cells were located predominantly in the perportal region and were occasionally observed to form ductular structures. According to Chen et al. (32), oval cells emerge when hepatocytes regeneration is impaired suggesting that they are the progeny of hepatic stem cells. Clouston et al. (33) reported that hepatic progenitor cells (HPCs) numbers correlated with fibrosis in chronic hepatitis C patients.

Shafritz and Dabeva (34) studies revealed a very low number of AFP +ve cells in the normal adult liver. Most of the cells have the morphologic appearance of oval cells rather than hepatocytes. According to Zheng and Taniguchi (35), AFP expression can be used as an indicator for an early hepatic lineage and has also served as an important marker for the activation of stem cell compartment. In our study, the insignificant increase in OV6 expression in CH may denote repopulating of the liver at this stage by hepatocytes more than oval cells. Tissue AFP positivity may indicate cirrhotic changes According to Folkwski et al. (39), hepatocytes proliferation rate increased in hepatitis C with increasing histological damage until cirrhosis is reached when the proliferation rate falls. Overwhelming liver injury, chronic liver injury or large scale hepatocytes senesce result in a potential stem cell compartment being activated from the smallest branches of the intrahepatic biliary tree. These reduction in hepatocytes proliferation in chronic hepatitis occurs concurrently with the activation of this potential stem cell compartment (14).

In the cases of the present study HGF showed no expression in the liver in normal control group, a significant increase \((p<0.001)\) was found in CH and \((p<0.05)\) in LC groups compared to control. HGF has not been found immunocytochemically in the normal liver without cirrhosis or chronic hepatitis (36). Also Ljubimova et al. (37) were unable to find HGF expression even by sensitive RT-PCR in normal liver.

HGF is a hepatotropic factor and in the regenerating liver stimulates proliferation of adult hepatocytes (38). According to Yamagami et al. (2001) HGF controls the growth of hepatocytes because it is produced principally in mesenchymal cells and is not found in hepatocytes themselves. Inoue et al. (24) showed that HGF expression was increased significantly during the course of cirrhosis development but decreased significantly at the appearance of cirrhosis manifestation. Their results suggest that the highly proliferative capability of hepatocytes at an early stage of cirrhosis development is induced by increased intrahepatic HGF expression. They suggested that intrahepatic HGF produced by Kupffer cells, HSCs and endothelial cells in the liver is increased for hepatocytes replication in response to hepatocyte damage. However, the ability to produce intrahepatic HGF is exhausted probably due to over-loaded production resulting in the manifestation of liver cirrhosis. However Okano et al. (40) reported intense staining of HGF in patients from AH to CH and LC. In our study TGFβ1 showed no expression in the liver in normal control group. There was a significant increase \((p<0.05)\) in CH group & in liver cirrhosis group \((p<0.001)\) relative to control.

Nguyen et al. (13) found that TGFβ1 induces growth inhibition by arresting cells in the G1 phase of the cell cycle, and that oval cells are less sensitive to TGFβ1 induced growth inhibition than hepatocytes. They suggested a reciprocal relationship between oval cells and hepatocytes proliferation and in the presence of TGFβ1, inhibition of hepatocytes proliferation could impair the regenerative response to liver injury. Thenappen et al. (41) concluded that TGFβ1 signaling plays a critical role in hepatic proliferation and transitional phenotype and its loss is associated with activation of hepatic progenitor cells.

In the present study, in CH, there was insignificant increase in OV6, tissue AFP was negative, while HGF & TGFβ1 showed a significant increase, which may indicate repopulation of the liver by proliferation of hepatocytes rather than oval cells at this stage. In LC, the rising of OV6 & tissue AFP was insignificant with the significant increase in HGF and TGFβ1, concomitant with disturbed liver architecture, fibrosis and impaired liver functions which; may be related among other factors to the bipotential property of oval cells differentiating into...
both hepatocytes and bile ductules. Lysy et al. (42) stated that there was no evidence of strong liver repopulation level by stem cells in animal modules. According to Chen et al. (32), although hepatic stem cells are activated and can differentiate into hepatic oval cells and transient hepatocyte-like cells, ultimately, it is not clear why the diseased liver cannot be regenerated completely. They speculate that the toxins released from hepatocytes necrosis inhibit not only the proliferation and regeneration of residual hepatocytes but also the differentiation and evolution of hepatic oval cells toward hepatocytes. According to Kung and Forbes (43), whatever the etiological cause of chronic liver disease, liver injury usually results in a form of excess scarring termed liver cirrhosis where the liver synthetic and metabolic function is compromised and there is also increased risk of developing liver cancer.

In our study of cases with HCC, tissue AFP & OV6 showed a highly significant increase (p<0.001) relative to control, to CH and to LC groups. Lowes et al. (31) suggested that oval cells proliferation is not disease specific but occurs in response to progressive liver injury and fibrosis. The association between severity of liver disease and increasing number of oval cells is consistent with the hypothesis that oval cells proliferation is associated with increasing risk of or development of HCC with advancing liver disease. Dumble et al. (7) stated that oval cells might give rise to HCC as a result of the arrest of stem cell maturation. There are two major nonexclusive hypothesis of the cellular origin of cancer from stem cells; due to maturation arrest or from de-differentiation of mature cells (5). Liver progenitor cells (LPCs) are activated in severe or chronic liver injury, particularly when mature hepatocytes replication is impaired. These LPCs have also been implicated in the development of liver tumors (42). According to Leverero (44) increasing experimental evidence suggests that HCV contributes to HCC by directly modulating pathways that promote the malignant transformation of hepatocytes. In a number of animal modules of hepatocarcinogenesis, the development of HCC is preceded by oval cell activation and the HCC in these animal modules express oval cell markers such as OV6 & AFP. This indicates that oval cells represent a potential target cell population for hepatocarcinogenesis (26). Reya et al. (45) stated that stem cells have the highest potential for proliferation and a much longer life span compared with their progeny and therefore have a greater opportunity to accumulate genetic mutation. According to Fujioka et al. (46), AFP expression was not found in well differentiated HCCs and tissue AFP positive cases are suggested to be biologically more malignant than HCCs that are AFP negative.

In the present study, HGF showed significant increase in HCC compared to control cases and to CH group. Yoshinaga et al. (36) stated that HGF has not been found immunocytochemically in normal liver without cirrhosis or chronic hepatitis.

According to Ljubimova et al. (37), immunohistochemical data correlated with PCR results regarding the overexpression of HGF/c-met system in HCC. Immuno fluorescence data were compatible with the existence of two mechanisms of HGF in HCC, the first one is normal or paracrine HGF production by sinusoidal, Ito and Kupffer cells. The second one is abnormal "additional" or autocrine HGF production, possibly by epithelial (bile duct) and parenchymal (hepatocytes) in some cirrhotic cases and especially in HCC.

Yamagami et al. (9) showed that HGF in patients with HCC showed little localization in cancer cells, but was noted in infiltrating mesenchymal cells in both cancerous and non-cancerous regions. Their results suggest that high serum levels of HGF revealed higher carcinogenic states in liver in patients with type C, chronic hepatitis and liver cirrhosis.

TGFβ1 family protein have also emerged as key players in promoting the growth of stem cells in their un-differentiated state (47). Amin and Mishra (15) hypothesized that the interruption of TGFβ1 pathway resulted in HCC through disruption of a normal pattern of cellular differentiation by hepatic progenitor /stem cells. Dong et al. (12) reported that the positive rate of TGFβ1 expression in HCC samples was significantly higher than that in the surrounding tissue. There is also growing evidence that TGFβ signaling proteins play a role in both maintenance of progenitor cells in their undifferentiated state and in the initiation of differentiation (41). According to Bissell (17); it is well established that TGFβ drives fibrosis, however its impact on the initiation or progression of neoplasia is controversial.

5. Conclusion:

In the present, there was an insignificant increase in OV6 expression from CH to LC to be significant in HCC. Tissue AFP showed positivity in cirrhosis and high expression in HCC. The increase in HGF was more in LC and HCC than CH. TGFβ1 showed progressive high expression from CH to LC to HCC. Further studies are needed in search of factors that may hinder differentiation of oval cells to functional hepatocytes in liver cirrhosis and may lead to malignant transformation.
References


40. Okano GI, Shiota G, Kawasaki H. Expression of hepatocytes growth factor HGF &HGF receptor (C-met)protein in liver diseases; an immunohistochemical study. Liver international; 19(2).