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Abstract: The aim of the present study is to find the exact solutions of three dimensional incompressible, unsteady 
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1. Introduction 

The fundamental governing equations for 
fluid motions are the Navier-Stokes equations. These 
equations are non-linear and only a small number of 
exact solutions have been found. Current advances in 
computer technology make the complete numerical 
integration of the Navier Stokes equations more 
feasible but the accuracy of the results can only be 
ascertained by a comparison with an exact solution. 
First, these solutions represent fundamental fluid 
dynamic flows and second, these solutions serve as 
standards for checking the accuracies of the many 
approximate methods, whether they are numerical, 
asymptotic or empirical. Due to this reason, the 
inverse solutions for the Newtonian fluids have 
become attractive because of its procedure for solving 
different type of problems. The procedure not only 
simplifies the partial differentials equation but also 
guide towards the exact solutions. 

Porous media processes are encountered in 
numerous real life examples such as sub-surface flow, 
reactive flow and bioremediations in soils, as well as 
medical applications. One particular example is 
encountered in the petroleum engineering, where oil 
(the nonwetting phase) inside a reservoir is displaced 
by water in the process of oil production. 
Employing the modified Darcy’s Law [1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11], the two-dimensional unsteady flow of 
an incompressible homogenous  fluid flow in a porous 
medium in the absence of body force, is governed by 

the equations, written in Cartesian coordinates  yx, , 

   0~  u ,                   (continuity)                  (1)    
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                 (momentum)                              

where u  is the velocity vector, p  the pressure,   

the viscosity, and r is the Darcy’s resistance given by 
the relation 

  K

u
r d

~
 .              (2-A)          

Here K is the permeability and   the effective 

viscosity of the fluid in the porous medium, and du~ is 

the Darcian velocity which is related to the fluid 

velocity u~  by uud
~~  ,  10   ,   being the 

porosity of the medium. In general, the effective 

viscosity   and the fluid viscosity   are different. 

However, at the macro level we may take them equal, 
through this assumption does not hold at the micro 
level. Following [4, 12, 13], equation (2-A) can now 
be written as 

K

u
r d

~
 .                                   (2-B)     

Stretching, convection, viscous diffusion and 
porosity of vorticity are the elemental processes for 
the vortex motions of a viscous fluid in a free space. 
By introducing the vorticity , the Navier Stokes 
equations for an incompressible fluid and the 
continuity equation for the velocity  are reduced to 
the following equation:  

     (3) 
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                                (4) 
Remark 1: for  we get the results of (Kambe 
1986) for incompressible Navier-Stocks equation. 
where ,  is the kinematic viscosity and  is 
the permeability constant. The four terms on the right 
hand side of equation (3) mentioned above shows the 
four processes. Batchelor [14] studied the steady state 
solutions for such vertex motions. Two dimensional 
unsteady problems was investigated by Kambe [17] 
and provided exact solutions for  general initial 
condition. The present work is the extension and 
generalization of the previous work of Kambe [20] 

with porous media. Townsend [21] considered  

and investigated the steady state solution for 
incompressible viscose fluid. Batchelor [14] also 
discussed the same solution for steady state Navier-
Stock equations. The motion of the small scale shear 
layers convected by a flow of large scale might be 
considered as a local model of turbulence. Rose and 
Sulem [22] considered that non-local interaction 
between larger and smaller eddies in wave number 
space is important for enstrophy transfer in the two 
dimensional turbulence. Kambe and Takao [16] found 
the experimental evidence of interactions and collision 
of vertices and showed that the two vertex rings 
moving in parallel come into contact in the course of 
time and result in information of a single dumbbell-
shaped vortex loop. Viscous effect would be important 
at the point of contact of two antiparallel vortex lines. 
The study of acoustic emission by the vortex collision 
was the main objective of Kambe and Minota [17].  

The present paper is the extension of 
Kambe’s paper [20], where he obtained a class of 
exact solutions of the Navier Stokes equations. We 
study the similar problem under the influence of 
porous medium for three dimensional incompressible 
fluid flows. Formulation of the problem is given in 
section 2 and section 3 contains different solutions to 
the problem. Conclusion is given in section 4. 

 

2.  Formulation of an initial value problem  

For an incompressible viscous flow the 

components of velocity are defined in three-

dimensional Cartesian coordinate system (x, y, z) as  

 Consider the velocity components as 
 

                             (5)   

Where a, b, c are functions of time t and v(x, t) and 

w(x, t) are unknown functions. It is assumed that the 

three parameter functions always satisfy the relation  

       a (t) =b (t) +c (t).                                (6) 

The equation of continuity (4) is satisfied by putting 

equation (5) and then using equation (6). The vorticity 

derived from the velocity (5) has only y, z 

components, which are independent of y, z which is as 

follows 
      ) )    (7) 

 where 

     

 
The vorticity equal to zero when both V and 

W vanish and the equation (5) reduces to the 
irrotational field 

         (9)             
This represents a stagnation point flow at the 

origin, which inflows both positive and negative x-
directions and outflows to the y and z-directions.    
Substitution of v and , by putting equation (5) and 
(7) in (3), we get the following components equations 

 
          (10) 

                

 
Remark 2: In equations (10) and (11) by putting 

 we get the results of (Kambe 1986) for 
incompressible Navier-Stocks equation.  
 On the left hand side of both the equations the second 
and third term represents stretching and convection of 
vortex lines respectively, whereas the right hand side 
represents the viscous diffusion. The equation of  

and  are separated and independently solved as far 
as relation (4) is satisfied. Let us introduce the 
functions  and  by

                                                                                                                             

         (12) 
Remark 3: by putting  in equation (12), we get 
the results of (Kambe 1986) for incompressible 
Navier-Stocks equation. 

Relation (6) leads to the equation
  

 

The first two terms of the equations (10) can be 
written as 

    =       (13) 

Similarly the first two terms of equation (11) can be 
written as 

      =      (14) 

Remark 4: Equations (13) and (14) reduced to the 
results of (Kambe 1986) for incompressible Navier-
Stocks equation by putting . 
Let by defining the following transformation 

      (15)   
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       (16)  

By applying the above transformation, equations (13) 
and (14) takes the form of diffusion equation:       

 

    ,                       (17)    

                           (18)    

The function   in equation (15) satisfying the 
above diffusion equations and the following initial 
conditions: 
  or  

(19) 
 , or     
(20) 
 
3.  Solution Methodology 

We now solve the diffusion equation   

subject to the initial conditions  
or  

For this we consider the function , 

which is the fundamental solution of the diffusion 
equation (17), known as the heat kernel.       
Equation (17) and (19) satisfying by the solution has 
the form 
                                          

           

Since , so the expression for vorticity  

has the form: 

   

(21) 
Similarly equation (18) subject to the initial condition 
(20) can be solved and expressed as 

  

(22) 
Remark 5: Equations (21) and (22) reduced to the 
results of (Kambe 1986) for incompressible Navier-
Stocks equation by putting  in ,  and in 

. 
Equations (21) and (22) represent the exact solutions 
of initial value problem (10), (11), (19) and (20) of the 
Navier Stokes Equation. 
3.1.  Solutions to velocities V and W 
We have 

     
 
The velocities V and W of the shear flow are given by 

 which leads to the vorticity 

form   

                         (23) 

   which leads to the vorticity 

form 

                                 (24) 

Where the constant and are chosen to satisfy the 
boundary conditions. When  are all 
constants, we have 

(i) We know that  where 

 is a constant, then  

                               (25) 

(ii) We know that  where 

 is a constant, then  

                                (26)   

(iii) We know that  where 

 is a constant, then  

                              (27) 

(iv)    and    

(28) 
Remark 6: Equations (25)-(28) reduced to the results 
of (Kambe 1986) for incompressible Navier-Stocks 
equation by putting the permeability constant . 
Assuming deformation of a material volume , the 
flow general property is examined which is 
parallelepiped at an initial instant. Suppose that the 
parallelepiped at t=0 is enclosed by the two planes 

 and ,  and  and  
 and  in the x, y and z-direction 

respectively. 
Hence the length of the edges is  

 
 
 

respectively, which are all assumed positive. These 
planes move with the material particle and take the 
positions ,  and  
at the same time t. Since the equation of motion of the 
planes are given by 

 
                          

 
The rate of change of the distance for each pair of 
planes, i.e. 

   is 

governed by   

 respectively. By 

integrating these equation we get 
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                    (29) 
Remark 7: Equations (29) reduced to the results of 
(Kambe 1986) for incompressible Navier-Stocks 
equation by putting . 
This represents contraction in the x-direction and 
stretching in the z-direction; further the relation 

  by (4) leads to the equation 

                      (30) 
Along each axis the distances  are 
uniform; by deforming the volume  by the  
dependent shear flow , the material volume is 
conserved and  may take any arbitrary 
finite values and are independent of its initial 
position.        
 
3.2.    Parallel shear layers 
In this section we consider a particular case of  and 

  which is given by the delta functions: 
                  (31) 

At  this represents  vertex 
sheets and the velocity distribution is given by 

                (32) 
where ,  is constant and  is the unit 
step function: 
 

 
 

 and                       
The velocity of the flow is uniform except at  
where the velocity changes discontinuously and 
directed in the -axis. This means the plane  is a 
vortex sheet which is characterized by the strength  
per unit -length (  has the dimension of velocity) 
and by the vortex direction in the -axis. Now we find 
the corresponding solution by introducing the initial 
condition (28) into equation (22). 

   and   

(33) 
                 

By using the original variables we find the expression 
for  in terms of x, instead of .  
Substituting     and   
in equation (33) 

  

(34) 
Remark 8: Equations (33) and (34) reduced to the 
results of (Kambe 1986) for incompressible Navier-
Stocks equation by putting  in ,  and 
in . 

From the second equation of (34) i.e.   we 
get  

 
This means that the peak position  of each term 
in the summation of (34) is convected toward  
by the flow . In addition to this convection effect, the 
solution (34) includes the effects of vortex stretching 
and viscous diffusion. 
3.3.  Single shear layer ( ) 
By putting  and  in (31), yielding 

 
The corresponding velocity distribution at  is 

 
with  in (32). At , this represents vertex 

sheet of strength  and the velocity takes the values 

 and  on two sides. The initial condition 

solution is given by 

         (35) 

From (35), where , substituting this into 
(23) with , we obtain the velocity 

 

Where the introducing function is  

, where  and 

.  
Remark 9: Equations (35)* and the velocity  
reduced to the results of (Kambe 1986) for 
incompressible Navier-Stocks equation by 
putting  in  and in . 
 
3.4.  Eulerian strength . 

Global feature of the flow field is considered 
to be examined by assuming change in the strength of 
the shear layer. A fixed zonal region  is taken up in 
the  plane, which is defined by a unit width in the 

-direction and infinite length in the -
direction . The (Eulerian) strength  
of the shear layer included in  is given by 

z
D

dxdy                                (36) 

               (37)  

                      (38)       

Since       

       (39) 

where   . 

The above equation can also be written as 

                 (40) 

or 
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Hence  

                      (41)   

Substituting (41) in (38) we get  
                                    (42)   
 
Remark 10: Equations (42) reduced to the results of 
(Kambe 1986) for incompressible Navier-Stocks 
equation by putting  in  and in . 
Since the vortex behavior is clearly understood in its 
Lagrangian aspect, we consider the strength of the 
shear layer which is estimated in a material area 
moving with the fluid particles. Let the material area 
which occupied the fixed region  at  be 
denoted by . According to the second equation of 
(29), the width  of  in the -direction grows by 
the factor , which is independent of . 
3.5. Strength  
Since  is equal to and does not depend upon , 
in   the strength of the shear layer becomes 

times . 

 

      since     

(43) 
We have 

   
Remark 11: The above equations reduced to the 
results of (Kambe 1986) for incompressible Navier-
Stocks equation by putting  in  and in . 
Since the assumption was at , so  

 
Thus we obtain , the strength of the shear layer in  
is invariant. This property does not depend on the -
position of D since  is independent of z. 
 
3.6.  Enstrophy 
The enstrophy is define by  

*

21

2D
Q dxdy  
 Using (33)*and , we obtained  with suffix 
1,   

 

The above equation shows that, since , 

always in the case  the enstrophy decrease. 
This is only occurs when in the two dimensional flow 
vortex stretching is absent and provided 
that constant, decays like  as . 
Next consider a particular case of 

and . This corresponds to the 

case that  and . Equation (35)* 

reduced to  

      (44) 

Also  reduced to  

 
This solution tends to a steady state solution. 
Since , by first equation of (34), so 

 
From the first equation of (34) and (28) we have 

 
          

Using this and the property  and , equation 
(44) tends to  

 
It can be shown that the last form   is obtained 

from (11) with  and , 

i.e.          

This is readily integrated once with 
integration constant  and the resulting first order 
equation vorticity diffusion, while the vortex 
stretching and the inward convection are represented 

by the parameter . The parameter   in  represents 

the magnitude of the porosity. Their balance 
determines . 
Remark 12: The above result reduced to the results of 
(Kambe 1986) for incompressible Navier-Stocks 
equation by putting  in each and every equation 
where  is involve. 
 
4. Conclusions  

The present work in this paper shows the 
exact solutions for an unsteady motion of shear layer 
convected by a three dimensional irrotational straining 
flow. The four aspects in the solution are discussed 
which are vortex motion i.e vortex stretching, viscous 
diffusion, convection and porosity of vorticity. The 
solution in the present paper is the three-dimensional 
generalization with porosity of the (Kambe 1986) for 
incompressible Navier-Stocks equation. 

Throughout in this paper when we put the 
permeability constant , we get the solutions of 
(Kambe 1986) for incompressible Navier-Stocks 
equation. 
 



Life Science Journal 2013;10(1s)                                                          http://www.lifesciencesite.com 

 

109 

 

 
References 
1.  Khuzhayorov, B., Auriault, J. L. and Royer, P. 

(2000). Derivation of Macroscopic Filtration Law 
for Transient Linear Viscoelastic Fluid Flow in 
Porous Media, Int. J. Engng Sci., vol. 38, 487-
504. 

2. Kamel, M. T. and Hamdan, M. H., 2006. 
Riabounchisky Flow through Porous Media, Int. 
J. of Pure and Appl. Math. vol. 27(1), pp. 113-
126. 

3.    Merabet, N., Siyyam, H., and Hamdan, M.H., 
2008. Analytical Approach to the Darcy-
Lapwood-Brinkman Equation, Appl. Math. and 
Comput., vol. 196(2-1), pp. 679-685. 

4. Vafai, K. and Tien, C.L., 1981. Boundary and 
Inertia Effects on Flow and Heat Transfer in 
Porous Media, Int. J. Heat Mass Trans., vol. 24, 
pp. 211-220. 

5. Vafai, K. and Kim, S.J., 1995. On the Limitations 
of Brinkman–Forchheimer-Extended Darcy 
Equation, Int. J. Heat Fluid Flow, vol. 16, pp. 11-
15. 

6. Vafai, K., 2005. Hand book of Porous Media, 
IInd edition, CRC press, Taylor & Francis Group, 
Boca Raton, FL 33487-2742, LLC. 

7. Kaviany, M., 1985. Laminar Flow Through a 
Porous Channel Bounded by Isothermal Parallel 
Plates, Int. J. Heat Mass Trans., vol. 28, pp. 851. 

8. Siddiqui, A.M., Islam, S. and Ghori, Q. K., 2006. 
Two-Dimensional Viscous Incompressible flows 
in a Porous Medium, J. of Porous Media, vol. 
9(6), pp. 591-596. 

9. Islam, S. and Zhou, C.Y., 2006. Exact Solutions 
of a Second Grade Fluid in a Porous Medium, 
Proc. NSC, Beijing. 

10. Islam, S. and Zhou, C.Y., 2007. Certain inverse 
solutions of a second grade MHD aligned fluid 
flows in a porous medium, Journal of Porous 
Media, vol. 10(4), 401-408. 

11. Islam, S., Mohyuddin, M. R., and Zhou C. Y., 
2008. Few exact solutions of non-Newtonian 
fluid in Porous Medium with Hall effects, Journal 
of porous Media, vol. 11(7), pp. 669-680. 

12. Zakaria, M., 2003. MHD Unsteady Free 
Convection Flow of a Couple Stress Fluid with 
one Relaxation Time Through a Porous Medium, 
Applied Math. & Comp., vol. 146, pp. 469-494. 

13. Breugem, W. P., 2007. The Effective Viscosity of 
a Channel-type Porous Medium, Physics of 
Fluids vol. 19(10). 

14. Batchelor, G. K., 1967. An introduction to Fluid 
Dynamics, Cambridge University Press London.    

15. Burger, J. M., 1948. Adv. App. Mech. 1, 171-199. 
16.  Kambe, T. and Takao, T., 1971. J. Phys. Soc 

Japan 31, 591-599. 
17. Kambe, T., 1983. J. Phys. Soc. Japan 52, 834-841 
18. Kambe, T. and Minota, T., 1983. Proc. Roy. Soc. 

London A 386, 277-308. 
19. Kambe, T., 1984. J. Phys. Soc. Japan 53, 13-1. 
20. Kambe, T., 1986. A class of exact solutions of the 

Navier-Stokes equation. Fluid Dynamics research 
1, 21-31. 

21. Townsend, A. A., 1951. Proc. Roy. Soc. London 
A 208, 534-542. 

22. Rose, II. A., and Sulem, P. L., 1978. J. Physique, 
441-484. 

23.  Tshepo O Tong and Matthew T Kambule , Total 
stress tensors and heat fluxes of single flow 
through a porous viscoelastic medium, Life Sci J 
2012; 9(1):1-12] (ISSN:1097-8135). 

 
 
 
 
11/26/2012 


